利用平均程度查找密集的未成年人

IF 0.9 3区 数学 Q2 MATHEMATICS
Kevin Hendrey, Sergey Norin, Raphael Steiner, Jérémie Turcotte
{"title":"利用平均程度查找密集的未成年人","authors":"Kevin Hendrey,&nbsp;Sergey Norin,&nbsp;Raphael Steiner,&nbsp;Jérémie Turcotte","doi":"10.1002/jgt.23169","DOIUrl":null,"url":null,"abstract":"<p>Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math>-vertex minor in graphs of average degree at least <span></span><math>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow></math>. We show that if <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> has average degree at least <span></span><math>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow></math>, it contains a minor on <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math> vertices with at least <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msqrt>\n <mn>2</mn>\n </msqrt>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mfenced>\n <mfrac>\n <mi>t</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow></math> edges. We show that this cannot be improved beyond <span></span><math>\n \n <mrow>\n <mfenced>\n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfenced>\n \n <mfenced>\n <mfrac>\n <mi>t</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow></math>. Finally, for <span></span><math>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≤</mo>\n \n <mn>6</mn>\n </mrow></math> we exactly determine the number of edges we are guaranteed to find in the densest <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math>-vertex minor in graphs of average degree at least <span></span><math>\n \n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"205-223"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding dense minors using average degree\",\"authors\":\"Kevin Hendrey,&nbsp;Sergey Norin,&nbsp;Raphael Steiner,&nbsp;Jérémie Turcotte\",\"doi\":\"10.1002/jgt.23169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow></math>-vertex minor in graphs of average degree at least <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow></math>. We show that if <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> has average degree at least <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow></math>, it contains a minor on <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow></math> vertices with at least <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msqrt>\\n <mn>2</mn>\\n </msqrt>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mfenced>\\n <mfrac>\\n <mi>t</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow></math> edges. We show that this cannot be improved beyond <span></span><math>\\n \\n <mrow>\\n <mfenced>\\n <mrow>\\n <mfrac>\\n <mn>3</mn>\\n \\n <mn>4</mn>\\n </mfrac>\\n \\n <mo>+</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfenced>\\n \\n <mfenced>\\n <mfrac>\\n <mi>t</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow></math>. Finally, for <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>6</mn>\\n </mrow></math> we exactly determine the number of edges we are guaranteed to find in the densest <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow></math>-vertex minor in graphs of average degree at least <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 1\",\"pages\":\"205-223\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23169\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23169","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受 Hadwiger 猜想的启发,我们研究了在平均度至少为 t - 1 的图中寻找最密集的 t 个顶点次要顶点的问题。我们证明,如果 G 的平均度至少为 t - 1,那么它包含了 t 个顶点上的 minor,其中至少有 ( 2 - 1 - o ( 1 ) t 2 条边。我们证明这一点不能超过 3 4 + o ( 1 ) t 2 。最后,对于 t ≤ 6,我们精确地确定了在平均阶数至少为 t - 1 的图中,我们保证能在最密集的 t 个顶点次要图中找到的边的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding dense minors using average degree

Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t -vertex minor in graphs of average degree at least t 1 . We show that if G has average degree at least t 1 , it contains a minor on t vertices with at least ( 2 1 o ( 1 ) ) t 2 edges. We show that this cannot be improved beyond 3 4 + o ( 1 ) t 2 . Finally, for t 6 we exactly determine the number of edges we are guaranteed to find in the densest t -vertex minor in graphs of average degree at least t 1 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信