{"title":"Breaking small automorphisms by list colourings","authors":"Jakub Kwaśny, Marcin Stawiski","doi":"10.1002/jgt.23181","DOIUrl":"10.1002/jgt.23181","url":null,"abstract":"<p>For a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>, we define a small automorphism as one that maps some vertex into its neighbour. We investigate the edge colourings of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> that break every small automorphism of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. We show that such a colouring can be chosen from any set of lists of length 3. In addition, we show that any set of lists of length 2 on both edges and vertices of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> yields a total colouring which breaks all the small automorphisms of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math>. These results are sharp, and they match the known bounds for the nonlist variant.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"288-292"},"PeriodicalIF":0.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manu Basavaraju, L. Sunil Chandran, Mathew C. Francis, Karthik Murali
{"title":"Variants of the Gyárfás–Sumner conjecture: Oriented trees and rainbow paths","authors":"Manu Basavaraju, L. Sunil Chandran, Mathew C. Francis, Karthik Murali","doi":"10.1002/jgt.23171","DOIUrl":"10.1002/jgt.23171","url":null,"abstract":"<p>Given a finite family <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow></math> of graphs, we say that a graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is “<span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow></math>-free” if <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> does not contain any graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow></math> as a subgraph. We abbreviate <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow></math>-free to just “<span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow></math>-free” when <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow></math>. A vertex-colored graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow></math> is called “rainbow” if no two vertices of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow></math> have the same color. Given an integer <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow></math> and a finite family of graphs <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow></math>, let <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>s</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>ℱ</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> denote the smallest integer such that any properly vertex-colored <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow></math>-free graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> having <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>χ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>ℓ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"136-161"},"PeriodicalIF":0.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Removable edges in near-bipartite bricks","authors":"Yipei Zhang, Fuliang Lu, Xiumei Wang, Jinjiang Yuan","doi":"10.1002/jgt.23173","DOIUrl":"10.1002/jgt.23173","url":null,"abstract":"<p>An edge <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow></math> of a matching covered graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is <i>removable</i> if <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>e</mi>\u0000 </mrow></math> is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is a <i>brick</i> if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>4</mn>\u0000 </msub>\u0000 </mrow></math> and <span></span><math>\u0000 \u0000 <mrow>\u0000 <mover>\u0000 <msub>\u0000 <mi>C</mi>\u0000 \u0000 <mn>6</mn>\u0000 </msub>\u0000 \u0000 <mo>¯</mo>\u0000 </mover>\u0000 </mrow></math> has at least <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> removable edges. A brick <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is <i>near-bipartite</i> if it has a pair of edges <span></span><math>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow></math> such that <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>e</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"113-135"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On vertex-transitive graphs with a unique hamiltonian cycle","authors":"Babak Miraftab, Dave Witte Morris","doi":"10.1002/jgt.23166","DOIUrl":"10.1002/jgt.23166","url":null,"abstract":"<p>A graph is said to be <i>uniquely hamiltonian</i> if it has a unique hamiltonian cycle. For a natural extension of this concept to infinite graphs, we find all uniquely hamiltonian vertex-transitive graphs with finitely many ends, and also discuss some examples with infinitely many ends. In particular, we show each nonabelian free group <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math> has a Cayley graph of degree <span></span><math>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math> that has a unique hamiltonian circle. (A weaker statement had been conjectured by Georgakopoulos.) Furthermore, we prove that these Cayley graphs of <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math> are outerplanar.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"65-99"},"PeriodicalIF":0.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Five-cycle double cover and shortest cycle cover","authors":"Siyan Liu, Rong-Xia Hao, Rong Luo, Cun-Quan Zhang","doi":"10.1002/jgt.23164","DOIUrl":"10.1002/jgt.23164","url":null,"abstract":"<p>The 5-even subgraph cycle double cover conjecture (5-CDC conjecture) asserts that every bridgeless graph has a 5-even subgraph double cover. A shortest even subgraph cover of a graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is a family of even subgraphs which cover all the edges of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> and the sum of their lengths is minimum. It is conjectured that every bridgeless graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> has an even subgraph cover with total length at most <span></span><math>\u0000 \u0000 <mrow>\u0000 <mfrac>\u0000 <mn>21</mn>\u0000 \u0000 <mn>15</mn>\u0000 </mfrac>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 </mrow></math>. In this paper, we study those two conjectures for weak oddness 2 cubic graphs and present a sufficient condition for such graphs to have a 5-CDC containing a member with many vertices. As a corollary, we show that for every oddness 2 cubic graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> satisfying the sufficient condition has a 4-even subgraph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math>-cover with total length at most <span></span><math>\u0000 \u0000 <mrow>\u0000 <mfrac>\u0000 <mn>20</mn>\u0000 \u0000 <mn>15</mn>\u0000 </mfrac>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math>. We also show that every oddness 2 cubic graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> with girth at least 30 has a 5-CDC containing a member of length at least <span></span><math>\u0000 \u0000 <mrow>\u0000 <mfrac>\u0000 <mn>9</mn>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"39-49"},"PeriodicalIF":0.9,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strong arc decompositions of split digraphs","authors":"Jørgen Bang-Jensen, Yun Wang","doi":"10.1002/jgt.23157","DOIUrl":"10.1002/jgt.23157","url":null,"abstract":"<p>A <i>strong arc decomposition</i> of a digraph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>A</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> is a partition of its arc set <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>A</mi>\u0000 </mrow></math> into two sets <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>A</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>A</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow></math> such that the digraph <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>D</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>A</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> is strong for <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>i</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math>. Bang-Jensen and Yeo conjectured that there is some <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>K</mi>\u0000 </mrow></math> such that every <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>K</mi>\u0000 </mrow></math>-arc-strong digraph has a strong arc decomposition. They also proved that with one exception on four vertices every 2-arc-strong semicomplete digraph has a strong arc decomposition. Bang-Jensen and Huang extended this result to locally semicomplete digraphs by proving that every 2-arc-strong locally semicomplete digraph which is not the square of an even cycle h","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"5-26"},"PeriodicalIF":0.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of Rose Window graphs","authors":"Milad Ahanjideh, István Kovács, Klavdija Kutnar","doi":"10.1002/jgt.23162","DOIUrl":"10.1002/jgt.23162","url":null,"abstract":"<p>A graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Gamma }}$</annotation>\u0000 </semantics></math> is said to be stable if for the direct product <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mtext>Aut</mtext>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Gamma }}times {{bf{K}}}_{2},text{Aut}({rm{Gamma }}times {{bf{K}}}_{2})$</annotation>\u0000 </semantics></math> is isomorphic to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mtext>Aut</mtext>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>Γ</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <msub>\u0000 <mi>Z</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{Aut}({rm{Gamma }})times {{mathbb{Z}}}_{2}$</annotation>\u0000 </semantics></math>; otherwise, it is called unstable. An unstable graph is called nontrivially unstable when it is not bipartite and no two vertices have the same neighborhood. Wilson described nine families of unstable Rose Window graphs and conjectured that these contain all nontrivially unstable Rose Window graphs (2008). In this paper we show that the conjecture is true.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"810-832"},"PeriodicalIF":0.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}