{"title":"Graphs with girth 9 and without longer odd holes are 3-colourable","authors":"Yan Wang, Rong Wu","doi":"10.1002/jgt.23101","DOIUrl":"10.1002/jgt.23101","url":null,"abstract":"<p>For a number <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>l</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow></math>, let <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mi>l</mi>\u0000 </msub>\u0000 </mrow></math> denote the family of graphs which have girth <span></span><math>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>l</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow></math> and have no odd hole with length greater than <span></span><math>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>l</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mo>⋃</mo>\u0000 \u0000 <mrow>\u0000 <mi>l</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msub>\u0000 \u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mi>l</mi>\u0000 </msub>\u0000 </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow></math>, <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow></math> and <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mo>⋃</mo>\u0000 \u0000 <mrow>\u0000 <mi>l</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>5</mn>\u0000 </mrow>\u0000 </msub>\u0000 \u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mi>l</mi>\u0000 </msub>\u0000 </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mn>4</mn>\u0000 </msub>\u0000 </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"871-886"},"PeriodicalIF":0.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Best possible upper bounds on the restrained domination number of cubic graphs","authors":"Boštjan Brešar, Michael A. Henning","doi":"10.1002/jgt.23095","DOIUrl":"10.1002/jgt.23095","url":null,"abstract":"<p>A dominating set in a graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is a set <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math> of vertices such that every vertex in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>⧹</mo>\u0000 \u0000 <mi>S</mi>\u0000 </mrow></math> is adjacent to a vertex in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math>. A restrained dominating set of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is a dominating set <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math> with the additional restraint that the graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>S</mi>\u0000 </mrow></math> obtained by removing all vertices in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math> is isolate-free. The domination number <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>γ</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> and the restrained domination number <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>r</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math>. Let <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> be a cubic graph of order <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow></math>. A classical result of Reed states that <span></span><math>\u0000 \u0000 <mrow>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"763-815"},"PeriodicalIF":0.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Milanič, Irena Penev, Nevena Pivač, Kristina Vušković
{"title":"Bisimplicial separators","authors":"Martin Milanič, Irena Penev, Nevena Pivač, Kristina Vušković","doi":"10.1002/jgt.23098","DOIUrl":"10.1002/jgt.23098","url":null,"abstract":"<p>A <i>minimal separator</i> of a graph <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is a set <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 \u0000 <mo>⊆</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> such that there exist vertices <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>b</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mi>V</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>⧹</mo>\u0000 \u0000 <mi>S</mi>\u0000 </mrow></math> with the property that <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math> separates <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow></math> from <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>b</mi>\u0000 </mrow></math> in <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math>, but no proper subset of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow></math> does. For an integer <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow></math>, we say that a minimal separator is <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-<i>simplicial</i> if it can be covered by <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math> cliques and denote by <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 \u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow></math> the class of all graphs in which each minimal separator is <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-simplicial. We show that for each <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"816-842"},"PeriodicalIF":0.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven Chaplick, Fabian Klute, Irene Parada, Jonathan Rollin, Torsten Ueckerdt
{"title":"Edge-minimum saturated \u0000 \u0000 k\u0000 -planar drawings","authors":"Steven Chaplick, Fabian Klute, Irene Parada, Jonathan Rollin, Torsten Ueckerdt","doi":"10.1002/jgt.23097","DOIUrl":"10.1002/jgt.23097","url":null,"abstract":"<p>For a class <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math> of drawings of loopless (multi-)graphs in the plane, a drawing <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mi>D</mi>\u0000 </mrow></math> is <i>saturated</i> when the addition of any edge to <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math> results in <span></span><math>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>D</mi>\u0000 \u0000 <mo>′</mo>\u0000 </msup>\u0000 \u0000 <mo>∉</mo>\u0000 \u0000 <mi>D</mi>\u0000 </mrow></math>—this is analogous to saturated graphs in a graph class as introduced by Turán and Erdős, Hajnal, and Moon. We focus on <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-planar drawings, that is, graphs drawn in the plane where each edge is crossed at most <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math> times, and the classes <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math> of all <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-planar drawings obeying a number of restrictions, such as having no crossing incident edges, no pair of edges crossing more than once, or no edge crossing itself. While saturated <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-planar drawings are the focus of several prior works, tight bounds on how sparse these can be are not well understood. We establish a generic framework to determine the minimum number of edges among all <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow></math>-vertex saturated <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-planar drawings in many natural classes. For example, when incident crossings, multicrossings and selfcrossings are all allowed, the sparsest <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow></math>-vertex saturated <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow></math>-planar drawings have <span></span><math>\u0000 \u0000 <mrow>\u0000 <mfrac>\u0000 <mn>2</mn>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"741-762"},"PeriodicalIF":0.9,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140323923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}