Journal of Graph Theory最新文献

筛选
英文 中文
Flip distance and triangulations of a polyhedron 多面体的翻转距离和三角形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-03-18 DOI: 10.1002/jgt.23096
Zili Wang
{"title":"Flip distance and triangulations of a polyhedron","authors":"Zili Wang","doi":"10.1002/jgt.23096","DOIUrl":"10.1002/jgt.23096","url":null,"abstract":"<p>It is known that the flip distance between two triangulations of a convex polygon is related to the smallest number of tetrahedra in the triangulation of some polyhedron. The latter was used to compute the diameter of the flip graph of convex polygons with a large number of vertices. However, it is yet unknown whether the flip distance and this smallest number of tetrahedra are always the same or even close. In this work, we find examples to show that the ratio between these two numbers can be arbitrarily close to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>3</mn>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation> $frac{3}{2}$</annotation>\u0000 </semantics></math>. We also propose two conjectures in the end, one about this ratio, and the other may have some implications on when two triangulations can achieve maximal distance.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding triangle-free 2-factors in general graphs 在一般图形中寻找无三角形的 2 因子
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-03-08 DOI: 10.1002/jgt.23089
David Hartvigsen
{"title":"Finding triangle-free 2-factors in general graphs","authors":"David Hartvigsen","doi":"10.1002/jgt.23089","DOIUrl":"10.1002/jgt.23089","url":null,"abstract":"<p>A 2-factor in a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a subset of edges <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation> $M$</annotation>\u0000 </semantics></math> such that every node of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is incident with exactly two edges of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation> $M$</annotation>\u0000 </semantics></math>. Many results are known concerning 2-factors including a polynomial-time algorithm for finding 2-factors and a characterization of those graphs that have a 2-factor. The problem of finding a 2-factor in a graph is a relaxation of the NP-hard problem of finding a Hamilton cycle. A stronger relaxation is the problem of finding a triangle-free 2-factor, that is, a 2-factor whose edges induce no cycle of length 3. In this paper, we present a polynomial-time algorithm for the problem of finding a triangle-free 2-factor as well as a characterization of the graphs that have such a 2-factor and related min–max and augmenting path theorems.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orientations of graphs with maximum Wiener index 具有最大维纳指数的图形方向
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-03-03 DOI: 10.1002/jgt.23090
Zhenzhen Li, Baoyindureng Wu
{"title":"Orientations of graphs with maximum Wiener index","authors":"Zhenzhen Li,&nbsp;Baoyindureng Wu","doi":"10.1002/jgt.23090","DOIUrl":"10.1002/jgt.23090","url":null,"abstract":"<p>In this paper, we study the Wiener index of the orientation of trees and theta-graphs. An orientation of a tree is called no-zig-zag if there is no subpath in which edges change the orientation twice. Knor, Škrekovski, and Tepeh conjectured that every orientation of a tree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> $T$</annotation>\u0000 </semantics></math> achieving the maximum Wiener index is no-zig-zag. We disprove this conjecture by constructing a counterexample. Knor, Škrekovski, and Tepeh conjectured that among all orientations of the theta-graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Θ</mi>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>b</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>c</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{Theta }}}_{a,b,c}$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>b</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation> $age bge c$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 \u0000 <mo>&gt;</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $bgt 1$</annotation>\u0000 </semantics></math>, the maximum Wiener index is achieved by the one in which the union of the paths between <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>u</mi>\u0000 \u0000 <mn>1</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${u}_{1}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>u</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${u}_{2}$</annotation>\u0000 </semantics></math> forms a directed cycle of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mi>b</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp lower bounds for the number of maximum matchings in bipartite multigraphs 双方格多图中最大匹配数的锐下限
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-03-03 DOI: 10.1002/jgt.23080
Alexandr V. Kostochka, Douglas B. West, Zimu Xiang
{"title":"Sharp lower bounds for the number of maximum matchings in bipartite multigraphs","authors":"Alexandr V. Kostochka,&nbsp;Douglas B. West,&nbsp;Zimu Xiang","doi":"10.1002/jgt.23080","DOIUrl":"10.1002/jgt.23080","url":null,"abstract":"<p>We study the minimum number of maximum matchings in a bipartite multigraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> with parts <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Y</mi>\u0000 </mrow>\u0000 <annotation> $Y$</annotation>\u0000 </semantics></math> under various conditions, refining the well-known lower bound due to M. Hall. When <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∣</mo>\u0000 <mi>X</mi>\u0000 <mo>∣</mo>\u0000 <mo>=</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $| X| =n$</annotation>\u0000 </semantics></math>, every vertex in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math> has degree at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>, and every vertex in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation> $X$</annotation>\u0000 </semantics></math> has at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math> distinct neighbors, the minimum is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 <mo>!</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mi>r</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $r!(k-r+1)$</annotation>\u0000 </semantics></math> when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>≥</mo>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $nge r$</annotation>\u0000 </semantics></math> and is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal spectral results of planar graphs without vertex-disjoint cycles 无顶点相交循环平面图的极谱结果
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-02-28 DOI: 10.1002/jgt.23084
Longfei Fang, Huiqiu Lin, Yongtang Shi
{"title":"Extremal spectral results of planar graphs without vertex-disjoint cycles","authors":"Longfei Fang,&nbsp;Huiqiu Lin,&nbsp;Yongtang Shi","doi":"10.1002/jgt.23084","DOIUrl":"10.1002/jgt.23084","url":null,"abstract":"<p>Given a planar graph family <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> ${rm{ {mathcal F} }}$</annotation>\u0000 </semantics></math>, let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mi>P</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>F</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $e{x}_{{mathscr{P}}}(n,{mathscr{F}})$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mi>p</mi>\u0000 <mi>e</mi>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mi>P</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>F</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $spe{x}_{{mathscr{P}}}(n,{mathscr{F}})$</annotation>\u0000 </semantics></math> be the maximum size and maximum spectral radius over all <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-vertex <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation> ${rm{ {mathcal F} }}$</annotation>\u0000 </semantics></math>-free planar graphs, respectively. Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $t{C}_{ell }$</annotation>\u0000 </semantics></math> be the disjoint union of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math> copies of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow>\u0000 <annotation> $ell $</annotation>\u0000 </semantics></math>-cycles, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation> $t{mathscr{C}}$</annotation>\u0000 </semantics></math> be the family of <span></span><math>\u0000 <semantics>\u0000 ","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold for stability of weak saturation 弱饱和稳定性阈值
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-02-23 DOI: 10.1002/jgt.23079
Mohammadreza Bidgoli, Ali Mohammadian, Behruz Tayfeh-Rezaie, Maksim Zhukovskii
{"title":"Threshold for stability of weak saturation","authors":"Mohammadreza Bidgoli,&nbsp;Ali Mohammadian,&nbsp;Behruz Tayfeh-Rezaie,&nbsp;Maksim Zhukovskii","doi":"10.1002/jgt.23079","DOIUrl":"10.1002/jgt.23079","url":null,"abstract":"<p>We study the weak <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>s</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{s}$</annotation>\u0000 </semantics></math>-saturation number of the Erdős–Rényi random graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>p</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathbb{G}}(n,p)$</annotation>\u0000 </semantics></math>, denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>wsat</mtext>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>p</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>s</mi>\u0000 </msub>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{wsat}({mathbb{G}}(n,p),{K}_{s})$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>s</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{s}$</annotation>\u0000 </semantics></math> is the complete graph on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation> $s$</annotation>\u0000 </semantics></math> vertices. In 2017, Korándi and Sudakov proved that the weak <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>s</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${K}_{s}$</annotation>\u0000 </semantics></math>-sat","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure of digraphs with excess one 多一数图的结构
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-02-19 DOI: 10.1002/jgt.23082
James Tuite
{"title":"The structure of digraphs with excess one","authors":"James Tuite","doi":"10.1002/jgt.23082","DOIUrl":"10.1002/jgt.23082","url":null,"abstract":"<p>A digraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-<i>geodetic</i> if for any (not necessarily distinct) vertices <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 <mo>,</mo>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation> $u,v$</annotation>\u0000 </semantics></math> there is at most one directed walk from <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 </mrow>\u0000 <annotation> $u$</annotation>\u0000 </semantics></math> to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation> $v$</annotation>\u0000 </semantics></math> with length not exceeding <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>. The order of a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-geodetic digraph with minimum out-degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation> $d$</annotation>\u0000 </semantics></math> is bounded below by the directed Moore bound <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>,</mo>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <msup>\u0000 <mi>d</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <mi>⋯</mi>\u0000 <mo>+</mo>\u0000 <msup>\u0000 <mi>d</mi>\u0000 <mi>k</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> $M(d,","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-avoiding walks and polygons on hyperbolic graphs 双曲图上的自避走和多边形
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-02-19 DOI: 10.1002/jgt.23087
Christoforos Panagiotis
{"title":"Self-avoiding walks and polygons on hyperbolic graphs","authors":"Christoforos Panagiotis","doi":"10.1002/jgt.23087","DOIUrl":"10.1002/jgt.23087","url":null,"abstract":"<p>We prove that for the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation> $d$</annotation>\u0000 </semantics></math>-regular tessellations of the hyperbolic plane by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-gons, there are exponentially more self-avoiding walks of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> than there are self-avoiding polygons of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>. We then prove that this property implies that the self-avoiding walk is ballistic, even on an arbitrary vertex-transitive graph. Moreover, for every fixed <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mi>O</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mi>d</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $d-1-O(1unicode{x02215}d)$</annotation>\u0000 </semantics></math> as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 \u0000 <mo>→</mo>\u0000 \u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation> $dto infty $</annotation>\u0000 </semantics></math>; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyhedra without cubic vertices are prism-hamiltonian 无立方顶点的多面体是棱-汉密尔顿多面体
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-02-19 DOI: 10.1002/jgt.23078
Simon Špacapan
{"title":"Polyhedra without cubic vertices are prism-hamiltonian","authors":"Simon Špacapan","doi":"10.1002/jgt.23078","DOIUrl":"10.1002/jgt.23078","url":null,"abstract":"<p>The prism over a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is the Cartesian product of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> with the complete graph on two vertices. A graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is prism-hamiltonian if the prism over <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is hamiltonian. We prove that every polyhedral graph (i.e., 3-connected planar graph) of minimum degree at least four is prism-hamiltonian.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The overfull conjecture on graphs of odd order and large minimum degree 奇数阶大最小度图的过满猜想
IF 0.9 3区 数学
Journal of Graph Theory Pub Date : 2024-02-14 DOI: 10.1002/jgt.23077
Songling Shan
{"title":"The overfull conjecture on graphs of odd order and large minimum degree","authors":"Songling Shan","doi":"10.1002/jgt.23077","DOIUrl":"10.1002/jgt.23077","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> be a simple graph with maximum degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${rm{Delta }}(G)$</annotation>\u0000 </semantics></math>. A subgraph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is overfull if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∣</mo>\u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>H</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∣</mo>\u0000 <mo>&gt;</mo>\u0000 <mi>Δ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>⌊</mo>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 <mo>∣</mo>\u0000 <mi>V</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>H</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∣</mo>\u0000 </mrow>\u0000 <mo>⌋</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $| E(H)| gt {rm{Delta }}(G)lfloor frac{1}{2}| V(H)| rfloor $</annotation>\u0000 </semantics></math>. Chetwynd and Hilton in 1986 conjectured that a graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>G</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>&gt;</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>3</mn>\u0000 </mfrac>\u0000 <mo>∣</mo>\u0000 <mi>V</mi>\u0000 <mr","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信