求助PDF
{"title":"匹配图和其他图的极值问题","authors":"Xiutao Zhu, Yaojun Chen","doi":"10.1002/jgt.23210","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a family of graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0001\" wiley:location=\"equation/jgt23210-math-0001.png\"><mrow><mrow><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow></mrow></math></annotation>\n </semantics></math>, a graph is called <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0002\" wiley:location=\"equation/jgt23210-math-0002.png\"><mrow><mrow><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow></mrow></math></annotation>\n </semantics></math>-free if it does not contain any member of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0003\" wiley:location=\"equation/jgt23210-math-0003.png\"><mrow><mrow><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow></mrow></math></annotation>\n </semantics></math> as a subgraph. The generalized Turán number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>ℱ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0004\" wiley:location=\"equation/jgt23210-math-0004.png\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mi>r</mi></msub><mo>,</mo><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is the maximum number of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0005\" wiley:location=\"equation/jgt23210-math-0005.png\"><mrow><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> in an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0006\" wiley:location=\"equation/jgt23210-math-0006.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0007\" wiley:location=\"equation/jgt23210-math-0007.png\"><mrow><mrow><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow></mrow></math></annotation>\n </semantics></math>-free graph and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>ℱ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℱ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0008\" wiley:location=\"equation/jgt23210-math-0008.png\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mn>2</mn></msub><mo>,</mo><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow><mo>)</mo></mrow><mo>=</mo><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi class=\"MJX-tex-caligraphic\" mathvariant=\"normal\">\\unicode{x02131}</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>, that is, the classical Turán number. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0009\" wiley:location=\"equation/jgt23210-math-0009.png\"><mrow><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></msub></mrow></mrow></math></annotation>\n </semantics></math> be a matching on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0010\" wiley:location=\"equation/jgt23210-math-0010.png\"><mrow><mrow><mi>s</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></mrow></math></annotation>\n </semantics></math> edges and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0011\" wiley:location=\"equation/jgt23210-math-0011.png\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\n </semantics></math> be any graph. In this paper, we determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n \n <mo>,</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0012\" wiley:location=\"equation/jgt23210-math-0012.png\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mi>r</mi></msub><mo>,</mo><mrow><mo class=\"MathClass-open\">{</mo><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi></mrow><mo class=\"MathClass-close\">}</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> apart from a constant additive term and also give a condition when the error constant term can be determined. In particular, we give the exact value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0013\" wiley:location=\"equation/jgt23210-math-0013.png\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mrow><mo class=\"MathClass-open\">{</mo><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi></mrow><mo class=\"MathClass-close\">}</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0014\" wiley:location=\"equation/jgt23210-math-0014.png\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\n </semantics></math> being any non-bipartite graph or some bipartite graphs. Furthermore, we determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>r</mi>\n </msub>\n \n <mo>,</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>M</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0015\" wiley:location=\"equation/jgt23210-math-0015.png\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mi>r</mi></msub><mo>,</mo><mrow><mo class=\"MathClass-open\">{</mo><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi></mrow><mo class=\"MathClass-close\">}</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0016\" wiley:location=\"equation/jgt23210-math-0016.png\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\n </semantics></math> is color critical with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0017\" wiley:location=\"equation/jgt23210-math-0017.png\"><mrow><mrow><mi>\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>\\unicode{x02265}</mo><mi>max</mi><mrow><mo class=\"MathClass-open\">{</mo><mrow><mi>r</mi><mo>\\unicode{x0002B}</mo><mn>1</mn><mo>,</mo><mn>4</mn></mrow><mo class=\"MathClass-close\">}</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"19-24"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Problems for a Matching and Any Other Graph\",\"authors\":\"Xiutao Zhu, Yaojun Chen\",\"doi\":\"10.1002/jgt.23210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For a family of graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0001\\\" wiley:location=\\\"equation/jgt23210-math-0001.png\\\"><mrow><mrow><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow></mrow></math></annotation>\\n </semantics></math>, a graph is called <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0002\\\" wiley:location=\\\"equation/jgt23210-math-0002.png\\\"><mrow><mrow><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow></mrow></math></annotation>\\n </semantics></math>-free if it does not contain any member of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0003\\\" wiley:location=\\\"equation/jgt23210-math-0003.png\\\"><mrow><mrow><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow></mrow></math></annotation>\\n </semantics></math> as a subgraph. The generalized Turán number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>ℱ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0004\\\" wiley:location=\\\"equation/jgt23210-math-0004.png\\\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mi>r</mi></msub><mo>,</mo><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is the maximum number of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>r</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0005\\\" wiley:location=\\\"equation/jgt23210-math-0005.png\\\"><mrow><mrow><msub><mi>K</mi><mi>r</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> in an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0006\\\" wiley:location=\\\"equation/jgt23210-math-0006.png\\\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0007\\\" wiley:location=\\\"equation/jgt23210-math-0007.png\\\"><mrow><mrow><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow></mrow></math></annotation>\\n </semantics></math>-free graph and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>ℱ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ℱ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0008\\\" wiley:location=\\\"equation/jgt23210-math-0008.png\\\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mn>2</mn></msub><mo>,</mo><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow><mo>)</mo></mrow><mo>=</mo><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"normal\\\">\\\\unicode{x02131}</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>, that is, the classical Turán number. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0009\\\" wiley:location=\\\"equation/jgt23210-math-0009.png\\\"><mrow><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn></mrow></msub></mrow></mrow></math></annotation>\\n </semantics></math> be a matching on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0010\\\" wiley:location=\\\"equation/jgt23210-math-0010.png\\\"><mrow><mrow><mi>s</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn></mrow></mrow></math></annotation>\\n </semantics></math> edges and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0011\\\" wiley:location=\\\"equation/jgt23210-math-0011.png\\\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\\n </semantics></math> be any graph. In this paper, we determine <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0012\\\" wiley:location=\\\"equation/jgt23210-math-0012.png\\\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mi>r</mi></msub><mo>,</mo><mrow><mo class=\\\"MathClass-open\\\">{</mo><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi></mrow><mo class=\\\"MathClass-close\\\">}</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> apart from a constant additive term and also give a condition when the error constant term can be determined. In particular, we give the exact value of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0013\\\" wiley:location=\\\"equation/jgt23210-math-0013.png\\\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mrow><mo class=\\\"MathClass-open\\\">{</mo><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi></mrow><mo class=\\\"MathClass-close\\\">}</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0014\\\" wiley:location=\\\"equation/jgt23210-math-0014.png\\\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\\n </semantics></math> being any non-bipartite graph or some bipartite graphs. Furthermore, we determine <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>M</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0015\\\" wiley:location=\\\"equation/jgt23210-math-0015.png\\\"><mrow><mrow><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><msub><mi>K</mi><mi>r</mi></msub><mo>,</mo><mrow><mo class=\\\"MathClass-open\\\">{</mo><mrow><msub><mi>M</mi><mrow><mi>s</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi></mrow><mo class=\\\"MathClass-close\\\">}</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0016\\\" wiley:location=\\\"equation/jgt23210-math-0016.png\\\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\\n </semantics></math> is color critical with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23210:jgt23210-math-0017\\\" wiley:location=\\\"equation/jgt23210-math-0017.png\\\"><mrow><mrow><mi>\\\\unicode{x003C7}</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>\\\\unicode{x02265}</mo><mi>max</mi><mrow><mo class=\\\"MathClass-open\\\">{</mo><mrow><mi>r</mi><mo>\\\\unicode{x0002B}</mo><mn>1</mn><mo>,</mo><mn>4</mn></mrow><mo class=\\\"MathClass-close\\\">}</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"19-24\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23210\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23210","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用