A Variant of the Teufl-Wagner Formula and Applications

IF 0.9 3区 数学 Q2 MATHEMATICS
Danyi Li, Weigen Yan
{"title":"A Variant of the Teufl-Wagner Formula and Applications","authors":"Danyi Li,&nbsp;Weigen Yan","doi":"10.1002/jgt.23220","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0001\" wiley:location=\"equation/jgt23220-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0002\" wiley:location=\"equation/jgt23220-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> be two electrically equivalent edge-weighted connected graphs with respect to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0003\" wiley:location=\"equation/jgt23220-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> (hence <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0004\" wiley:location=\"equation/jgt23220-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x02286}&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>). Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>∪</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>∪</mo>\n \n <mo>⋯</mo>\n <mspace></mspace>\n \n <mo>∪</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>c</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0005\" wiley:location=\"equation/jgt23220-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0222A}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x0222A}&lt;/mo&gt;&lt;mo&gt;\\unicode{x022EF}&lt;/mo&gt;&lt;mspace width=\"0.25em\"/&gt;&lt;mo&gt;\\unicode{x0222A}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> be a forest in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0006\" wiley:location=\"equation/jgt23220-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0007\" wiley:location=\"equation/jgt23220-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> the sum of weights of spanning trees of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0008\" wiley:location=\"equation/jgt23220-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0009\" wiley:location=\"equation/jgt23220-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> the sum of weights of spanning trees each of which containing all edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0010\" wiley:location=\"equation/jgt23220-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, where the weight <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0011\" wiley:location=\"equation/jgt23220-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;\\unicode{x003C9}&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of a subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0012\" wiley:location=\"equation/jgt23220-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0013\" wiley:location=\"equation/jgt23220-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is the product of weights of edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0014\" wiley:location=\"equation/jgt23220-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Suppose that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>⋅</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0015\" wiley:location=\"equation/jgt23220-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;\\unicode{x022C5}&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is the edge-weighted graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0016\" wiley:location=\"equation/jgt23220-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> by identifying all vertices in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0017\" wiley:location=\"equation/jgt23220-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0018\" wiley:location=\"equation/jgt23220-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> into a new vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>u</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0019\" wiley:location=\"equation/jgt23220-math-0019.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0020\" wiley:location=\"equation/jgt23220-math-0020.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;\\unicode{x02264}&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. In this paper, we obtain a variant of the Teufl-Wagner formula (Linear Alg Appl, 432 (2010), 441–457) and prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>=</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>⋅</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0021\" wiley:location=\"equation/jgt23220-math-0021.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x02215}&lt;/mo&gt;&lt;mi&gt;\\unicode{x003C9}&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;\\unicode{x022C5}&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. As applications, we enumerate spanning trees of some graphs containing all edges in a given forest and give a simple proof of Moon's formula (Mathematika, 11 (1964), 95–98) and the Dong-Ge formula (J Graph Theory, 101 (2022), 79–94). In particular, we count spanning trees with a perfect matching in some graphs.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"68-75"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = ( V ( G ) , E ( G ) ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0001" wiley:location="equation/jgt23220-math-0001.png"><mrow><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math> and G * = ( V ( G * ) , E ( G * ) ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0002" wiley:location="equation/jgt23220-math-0002.png"><mrow><mrow><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math> be two electrically equivalent edge-weighted connected graphs with respect to V ( G ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0003" wiley:location="equation/jgt23220-math-0003.png"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math> (hence V ( G ) V ( G * ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0004" wiley:location="equation/jgt23220-math-0004.png"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\unicode{x02286}</mo><mi>V</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow></mrow></math> ). Let F = T 1 T 2 T c <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0005" wiley:location="equation/jgt23220-math-0005.png"><mrow><mrow><mi>F</mi><mo>=</mo><msub><mi>T</mi><mn>1</mn></msub><mo>\unicode{x0222A}</mo><msub><mi>T</mi><mn>2</mn></msub><mo>\unicode{x0222A}</mo><mo>\unicode{x022EF}</mo><mspace width="0.25em"/><mo>\unicode{x0222A}</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></mrow></math> be a forest in G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0006" wiley:location="equation/jgt23220-math-0006.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> . Denote by t ( G ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0007" wiley:location="equation/jgt23220-math-0007.png"><mrow><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math> the sum of weights of spanning trees of G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0008" wiley:location="equation/jgt23220-math-0008.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> and by t F ( G ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0009" wiley:location="equation/jgt23220-math-0009.png"><mrow><mrow><msub><mi>t</mi><mi>F</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math> the sum of weights of spanning trees each of which containing all edges in F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0010" wiley:location="equation/jgt23220-math-0010.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> , where the weight ω ( H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0011" wiley:location="equation/jgt23220-math-0011.png"><mrow><mrow><mi>\unicode{x003C9}</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math> of a subgraph H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0012" wiley:location="equation/jgt23220-math-0012.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> of G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0013" wiley:location="equation/jgt23220-math-0013.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> is the product of weights of edges in H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0014" wiley:location="equation/jgt23220-math-0014.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . Suppose that G * V ( F ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0015" wiley:location="equation/jgt23220-math-0015.png"><mrow><mrow><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x022C5}</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></mrow></math> is the edge-weighted graph obtained from G * <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0016" wiley:location="equation/jgt23220-math-0016.png"><mrow><mrow><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup></mrow></mrow></math> by identifying all vertices in V ( T i ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0017" wiley:location="equation/jgt23220-math-0017.png"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><msub><mi>T</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></mrow></math> of G * <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0018" wiley:location="equation/jgt23220-math-0018.png"><mrow><mrow><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup></mrow></mrow></math> into a new vertex u i <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0019" wiley:location="equation/jgt23220-math-0019.png"><mrow><mrow><msub><mi>u</mi><mi>i</mi></msub></mrow></mrow></math> for 1 i c <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0020" wiley:location="equation/jgt23220-math-0020.png"><mrow><mrow><mn>1</mn><mo>\unicode{x02264}</mo><mi>i</mi><mo>\unicode{x02264}</mo><mi>c</mi></mrow></mrow></math> . In this paper, we obtain a variant of the Teufl-Wagner formula (Linear Alg Appl, 432 (2010), 441–457) and prove that t ( G ) t ( G * ) = t F ( G ) ω ( F ) t ( G * V ( F ) ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0021" wiley:location="equation/jgt23220-math-0021.png"><mrow><mrow><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mi>t</mi><mi>F</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\unicode{x02215}</mo><mi>\unicode{x003C9}</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mrow><mo>(</mo><mrow><msup><mi>G</mi><mo>\unicode{x0002A}</mo></msup><mo>\unicode{x022C5}</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac></mrow></mrow></math> . As applications, we enumerate spanning trees of some graphs containing all edges in a given forest and give a simple proof of Moon's formula (Mathematika, 11 (1964), 95–98) and the Dong-Ge formula (J Graph Theory, 101 (2022), 79–94). In particular, we count spanning trees with a perfect matching in some graphs.

Teufl-Wagner公式的一种变体及其应用
设G = (V (G)),E (G)) &lt;math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23220: jgt23220 -数学- 0001”威利:位置= "方程/ jgt23220 -数学- 0001. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt G&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; E&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt G&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;和G * = (VG *);E (g *))&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0002”威利:位置= "方程/ jgt23220 -数学- 0002. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msup&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt; \ unicode {x0002A} & lt; / mo&gt; & lt; / msup&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; msup&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt; \ unicode {x0002A} & lt; / mo&gt; & lt; / msup&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; E&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; msup&gt; & lt;心肌梗死gt; G&lt / mi&gt; & lt; mo&gt; \ unicode {x0002A} & lt; / mo&gt; & lt; / msup&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;是关于V (G)的两个电等效边权连通图&lt;math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23220: jgt23220 -数学- 0003“威利:位置= "方程/ jgt23220 -数学- 0003。 png”&gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; V&lt / mi&gt; &lt; mrow&gt &lt; mo&gt (&lt; / mo&gt &lt; mi&gt; G&lt / mi&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;(因此V (G)⊆V (“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0004”魏:地方= "方程/ jgt23220-math-0004.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; V&lt / mi&gt; &lt mrow&gt; &lt; mo&gt (&lt; / mo&gt &lt; mi&gt; G&lt / mi&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt; mo&gt \ unicode {x02286 &lt; / mo&gt; &lt mi&gt; V&lt / mi&gt; &lt; mrow&gt &lt; mo&gt; (&lt / mo&gt; &lt; msup&gt &lt; mi&gt; G&lt / mi&gt; &lt; mo&gt \ unicode {x0002A &lt; / mo&gt; &lt / msup&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt ; ).设F = t1∪t2∪…∪T c &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0005”魏:地方= "方程/ jgt23220-math-0005.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; F&lt; / mi&gt &lt; mo&gt; = &lt / mo&gt; &lt; msub&gt &lt; mi&gt; T&lt / mi&gt; &lt; mn&gt 1&lt; / mn&gt; &lt / msub&gt; &lt; mo&gt \ unicode {x0222A &lt; / mo&gt; &lt; msub&gt &lt; mi&gt; T&lt / mi&gt; &lt; mn&gt 2&lt; / mn&gt; &lt / msub&gt; &lt; mo&gt \ unicode {x0222A &lt; / mo&gt; &lt; mo&gt \ unicode {x022EF &lt; / mo&gt; &lt mspacewidth = " 0.25em / &gt; &lt; mo&gt \ unicode {x0222A &lt; / mo&gt; &lt msub&gt; &lt; mi&gt T&lt; / mi&gt; &lt mi&gt; c&lt; / mi&gt &lt; / msub&gt; &lt / mrow&gt; &lt; / mrow&gt &lt / math&gt;在G&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0006" wiley:location="equation/jgt23220-math-0006.png"&gt;&lt;.xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0007”魏:地方= "方程/ jgt23220-math-0007.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; t&lt / mi&gt; &lt mrow&gt; &lt; mo&gt (&lt; / mo&gt &lt; mi&gt; G&lt / mi&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;点心》weights of spanning trees of G & lt;计算xmlns = " http://www.w3.org/1998/Math/MathML altimg = " urn: x-wiley 03649024:媒体:jgt23220: jgt23220-math-0008“魏:地方=方程/ jgt23220-math-0008.png &gt; &lt; mrow&gt &lt; mrow&gt &lt; mi&gt; G&lt / mi&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;和t F (G) &lt;math xmlns="http://www.w3。 org/1998/Math/MathML " altimg = " urn: x-wiley: 03649024:媒体:jgt23220: jgt23220 -数学- 0009“威利:位置= "方程/ jgt23220 -数学- 0009. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; t&lt; / mi&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; / msub&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt G&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;F&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0010" wiley:location="equation/jgt23220-math-0010.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;,其中权重ω (H) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0011”威利:位置= "方程/ jgt23220 -数学- 0011. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; \ unicode {x003C9} & lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt H&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;查看子图H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0012" wiley:location="equation/jgt23220-math-0012.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&gt; &gt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;;是H&lt; math中边权的乘积xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0014" wiley:location="equation/jgt23220-math-0014.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;。假设G *⋅V (F)&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0015" wiley:location="equation/jgt23220-math-0015.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /jgt23220- jgt23220-math-0015.png"&gt;&lt;mrow&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; \unicode{x0002A}&lt;/mo&gt;&lt;/msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt; /msup&gt;&lt;为从G * &lt;math得到的边加权图xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0016”威利:位置= "方程/ jgt23220 -数学- 0016. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msup&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt; \ unicode {x0002A} & lt; / mo&gt; & lt; / msup&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;通过识别V (t1)中的所有顶点&lt;math xmlns="http://www.w3 "。 org/1998/Math/MathML altimg = " urn: x-wiley 03649024:媒体:jgt23220: jgt23220-math-0017“魏:地方=方程/ jgt23220-math-0017.png &gt; &lt mrow&gt; &lt; mrow&gt &lt; mi&gt; V&lt / mi&gt; &lt; mrow&gt &lt; mo&gt; (&lt / mo&gt; &lt; msub&gt &lt; mi&gt; T&lt / mi&gt; &lt; mi&gt i&lt; / mi&gt; &lt / msub&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220- math0018 ”魏:地方= "方程/ jgt23220-math-0018.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msup&gt; &lt mi&gt; G&lt / mi&gt; &lt; mo&gt \ unicode {x0002A &lt; / mo&gt; &lt / msup&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;数学xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0019”魏:地方= "方程/ jgt23220-math-0019.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msub&gt; &lt; mi&gt u&lt; / mi&gt; &lt mi&gt; i&lt; / mi&gt &lt; / msub&gt; &lt / mrow&gt; &lt; / mrow&gt &lt / math&gt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0020”魏:地方= "方程/ jgt23220-math-0020.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt mn&gt; 1&lt / mn&gt; &lt; mo&gt \ unicode {x02264 &lt; / mo&gt; &lt mi&gt; i&lt / mi&gt; &lt; mo&gt \ unicode {x02264 &lt; / mo&gt; &lt mi&gt; c&lt; / mi&gt &lt; / mrow&gt; &lt / mrow&gt; &lt / math&gt;. 在本文中,我们得到了Teufl-Wagner公式的一个变体(线性数学应用,432(2010))。441-457)证明t (G) t(g *) =F (G)∕ω (F) t (G *⋅v (f)) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0021”威利:位置= "方程/ jgt23220 -数学- 0021. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mfrac&gt; & lt; mrow&gt; & lt; mi&gt; t&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt G&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; mrow&gt; & lt; mi&gt; t&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; msup&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt; \ unicode {x0002A} & lt; / mo&gt; & lt; / msup&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mfrac&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; mfrac&gt; & lt; mrow&gt; & lt; msub&gt;& lt; mi&gt t&lt; / mi&gt; & lt; mi&gt; F&lt; / mi&gt; & lt; / msub&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt G&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; mo&gt; \ unicode {x02215} & lt; / mo&gt; & lt; mi&gt; \ unicode {x003C9} & lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt F&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; mrow&gt; & lt; mi&gt; t&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; msup&gt; & lt; mi&gt; G&lt; / mi&gt; & lt; mo&gt; \ unicode {x0002A} & lt; / mo&gt; & lt; / msup&gt; & lt; mo&gt;unicode {x022C5} \ & lt; / mo&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt F&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mfrac&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;。作为应用,我们列举了给定森林中包含所有边的一些图的生成树,并给出了Moon公式(Mathematika, 11(1964), 95-98)和Dong-Ge公式(J Graph Theory, 101(2022), 79-94)的简单证明。特别地,我们对一些图中具有完美匹配的生成树进行计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信