On the Ubiquity of Oriented Double Rays

IF 0.9 3区 数学 Q2 MATHEMATICS
Florian Gut, Thilo Krill, Florian Reich
{"title":"On the Ubiquity of Oriented Double Rays","authors":"Florian Gut,&nbsp;Thilo Krill,&nbsp;Florian Reich","doi":"10.1002/jgt.23216","DOIUrl":null,"url":null,"abstract":"<p>A digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0001\" wiley:location=\"equation/jgt23216-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is called <i>ubiquitous</i> if every digraph that contains arbitrarily many vertex-disjoint copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0002\" wiley:location=\"equation/jgt23216-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> also contains infinitely many vertex-disjoint copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0003\" wiley:location=\"equation/jgt23216-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. We study oriented double rays, that is, digraphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0004\" wiley:location=\"equation/jgt23216-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> whose underlying undirected graphs are double rays. Calling a vertex of an oriented double ray a turn if it has in-degree or out-degree 2, we prove that an oriented double ray with at least one turn is ubiquitous if and only if it has a (finite) odd number of turns. It remains an open problem to determine whether the consistently oriented double ray is ubiquitous.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"62-67"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23216","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A digraph H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0001" wiley:location="equation/jgt23216-math-0001.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> is called ubiquitous if every digraph that contains arbitrarily many vertex-disjoint copies of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0002" wiley:location="equation/jgt23216-math-0002.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> also contains infinitely many vertex-disjoint copies of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0003" wiley:location="equation/jgt23216-math-0003.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . We study oriented double rays, that is, digraphs H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0004" wiley:location="equation/jgt23216-math-0004.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> whose underlying undirected graphs are double rays. Calling a vertex of an oriented double ray a turn if it has in-degree or out-degree 2, we prove that an oriented double ray with at least one turn is ubiquitous if and only if it has a (finite) odd number of turns. It remains an open problem to determine whether the consistently oriented double ray is ubiquitous.

Abstract Image

论定向双射线的普遍性
有向图H<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0001" wiley:location="equation/jgt23216-math-0001.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;如果每个有向图包含任意多个顶点不相交的H <;math副本,则称为泛在图。xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0002”威利:位置= "方程/ jgt23216 -数学- 0002. png”祝辞& lt; mrow> & lt; mrow> & lt; mi> H< / mi> & lt; / mrow> & lt; / mrow> & lt; / math>还包含无穷多个顶点不相交的H<; math副本xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0003" wiley:location="equation/jgt23216-math-0003.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></math>;。我们研究定向双射线,即有向图H<; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23216:jgt23216-math-0004" wiley:location="equation/jgt23216-math-0004.png"><mrow>< /mrow></mrow></ mrow></mrow></ mrow></mrow></math>;它下面的无向图是双射线。当一个有向双射线的顶点有入次或出次为2时称其为一个转弯,我们证明了至少有一个转弯的有向双射线是泛在的当且仅当它有(有限)奇数个转弯。确定定向一致的双射线是否普遍存在仍然是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信