Kneser图子图的极大度

IF 0.9 3区 数学 Q2 MATHEMATICS
Peter Frankl, Andrey Kupavskii
{"title":"Kneser图子图的极大度","authors":"Peter Frankl,&nbsp;Andrey Kupavskii","doi":"10.1002/jgt.23213","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we study the maximum degree in nonempty-induced subgraphs of the Kneser graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>KG</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0001\" wiley:location=\"equation/jgt23213-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;KG&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. One of the main results asserts that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>&gt;</mo>\n \n <msub>\n <mi>k</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0002\" wiley:location=\"equation/jgt23213-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x0003E}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>&gt;</mo>\n \n <mn>64</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0003\" wiley:location=\"equation/jgt23213-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x0003E}&lt;/mo&gt;&lt;mn&gt;64&lt;/mn&gt;&lt;msup&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, whenever a nonempty subgraph has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0004\" wiley:location=\"equation/jgt23213-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mfenced close=\")\" open=\"(\"&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> vertices, its maximum degree is at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mfenced>\n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mfrac>\n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mi>n</mi>\n </mfrac>\n </mrow>\n </mfenced>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n </mfrac>\n </mfenced>\n \n <mo>≥</mo>\n \n <mn>0.49</mn>\n \n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0005\" wiley:location=\"equation/jgt23213-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mfrac&gt;&lt;msup&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mfenced&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mo&gt;\\unicode{x02265}&lt;/mo&gt;&lt;mn&gt;0.49&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. This bound is essentially best possible. One of the intermediate steps is to obtain structural results on nonempty subgraphs with small maximum degree.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"88-96"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Degrees in Subgraphs of Kneser Graphs\",\"authors\":\"Peter Frankl,&nbsp;Andrey Kupavskii\",\"doi\":\"10.1002/jgt.23213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we study the maximum degree in nonempty-induced subgraphs of the Kneser graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>KG</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0001\\\" wiley:location=\\\"equation/jgt23213-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;KG&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. One of the main results asserts that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>&gt;</mo>\\n \\n <msub>\\n <mi>k</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0002\\\" wiley:location=\\\"equation/jgt23213-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x0003E}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>64</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0003\\\" wiley:location=\\\"equation/jgt23213-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x0003E}&lt;/mo&gt;&lt;mn&gt;64&lt;/mn&gt;&lt;msup&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, whenever a nonempty subgraph has <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>k</mi>\\n \\n <mfenced>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0004\\\" wiley:location=\\\"equation/jgt23213-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02265}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mfenced close=\\\")\\\" open=\\\"(\\\"&gt;&lt;mfrac linethickness=\\\"0\\\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> vertices, its maximum degree is at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mfenced>\\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mfrac>\\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mi>n</mi>\\n </mfrac>\\n </mrow>\\n </mfenced>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mfenced>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n </mfenced>\\n \\n <mo>≥</mo>\\n \\n <mn>0.49</mn>\\n \\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0005\\\" wiley:location=\\\"equation/jgt23213-math-0005.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mfrac&gt;&lt;msup&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mfenced&gt;&lt;mfrac linethickness=\\\"0\\\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mo&gt;\\\\unicode{x02265}&lt;/mo&gt;&lt;mn&gt;0.49&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. This bound is essentially best possible. One of the intermediate steps is to obtain structural results on nonempty subgraphs with small maximum degree.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"88-96\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23213\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23213","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Kneser图KG (n)的非空诱导子图的最大度。k) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0001”威利:位置= "方程/ jgt23213 -数学- 0001. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; KG&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt n&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;。其中一个主要结果断言,对于k &gt;k 0&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213- jgt23213-math-0002" wiley:location="equation/jgt23213-math-0002.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /jgt23213- jgt23213- jgt23213-math-0002.png"&gt;&lt;mrow&gt;&lt; /jgt23213- jgt23213- jgt23213-math-0002.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /msub&gt;&lt; msub&gt;&lt; msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/ msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;n &gt;64 k 2 &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0003”威利:位置= "方程/ jgt23213 -数学- 0003. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; mo&gt; \ unicode {x0003E} & lt; / mo&gt; & lt; mn&gt; 64 & lt; / mn&gt; & lt; msup&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / msup&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;,当一个非空子图有m≥k n−2时k−2 &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0004" wiley:location=“equation/jgt23213-math-0004. ” png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; m&lt; / mi&gt; & lt; mo&gt; \ unicode {x02265} & lt; / mo&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mfenced =”)“开放= "(“祝辞& lt; mfrac linethickness = " 0 "祝辞& lt; mrow&gt; & lt; mi&gt n&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mrow&gt; & lt; mrow&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mrow&gt; & lt; / mfrac&gt; & lt; / mfenced&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;顶点,它的最大度至少为1 2 1−k2 n m−n−2 k−2≥0.49 m&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0005”威利:位置= "方程/ jgt23213 -数学- 0005. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mfrac&gt; & lt; mn&gt; 1 & lt; / mn&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mfrac&gt; & lt; mfenced&gt; & lt; mrow&gt; & lt; mn&gt; 1 & lt; / mn&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mfrac&gt; & lt; msup&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / msup&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; / mfrac&gt; & lt; / mrow&gt; & lt; / mfenced&gt; & lt; mi&gt; m&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mfenced&gt; & lt; mfraclinethickness = " 0 "祝辞& lt; mrow&gt; & lt; mi&gt; n&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mrow&gt; & lt; mrow&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mrow&gt; & lt; / mfrac&gt; & lt; / mfenced&gt; & lt; mo&gt; \ unicode {x02265} & lt; / mo&gt; & lt; mn&gt; 0.49 & lt; / mn&gt; & lt; mi&gt; m&lt; / mi&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;。这个边界本质上是最好的。中间步骤之一是在极小极大度的非空子图上得到结构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Degrees in Subgraphs of Kneser Graphs

In this paper, we study the maximum degree in nonempty-induced subgraphs of the Kneser graph KG ( n , k ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0001" wiley:location="equation/jgt23213-math-0001.png"><mrow><mrow><mi>KG</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mrow></mrow></math> . One of the main results asserts that, for k > k 0 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0002" wiley:location="equation/jgt23213-math-0002.png"><mrow><mrow><mi>k</mi><mo>\unicode{x0003E}</mo><msub><mi>k</mi><mn>0</mn></msub></mrow></mrow></math> and n > 64 k 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0003" wiley:location="equation/jgt23213-math-0003.png"><mrow><mrow><mi>n</mi><mo>\unicode{x0003E}</mo><mn>64</mn><msup><mi>k</mi><mn>2</mn></msup></mrow></mrow></math> , whenever a nonempty subgraph has m k n 2 k 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0004" wiley:location="equation/jgt23213-math-0004.png"><mrow><mrow><mi>m</mi><mo>\unicode{x02265}</mo><mi>k</mi><mfenced close=")" open="("><mfrac linethickness="0"><mrow><mi>n</mi><mo>\unicode{x02212}</mo><mn>2</mn></mrow><mrow><mi>k</mi><mo>\unicode{x02212}</mo><mn>2</mn></mrow></mfrac></mfenced></mrow></mrow></math> vertices, its maximum degree is at least 1 2 1 k 2 n m n 2 k 2 0.49 m <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23213:jgt23213-math-0005" wiley:location="equation/jgt23213-math-0005.png"><mrow><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>\unicode{x02212}</mo><mfrac><msup><mi>k</mi><mn>2</mn></msup><mi>n</mi></mfrac></mrow></mfenced><mi>m</mi><mo>\unicode{x02212}</mo><mfenced><mfrac linethickness="0"><mrow><mi>n</mi><mo>\unicode{x02212}</mo><mn>2</mn></mrow><mrow><mi>k</mi><mo>\unicode{x02212}</mo><mn>2</mn></mrow></mfrac></mfenced><mo>\unicode{x02265}</mo><mn>0.49</mn><mi>m</mi></mrow></mrow></math> . This bound is essentially best possible. One of the intermediate steps is to obtain structural results on nonempty subgraphs with small maximum degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信