求助PDF
{"title":"C10在超立方体中的密度为正Turán","authors":"Alexandr Grebennikov, João Pedro Marciano","doi":"10.1002/jgt.23217","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0001\" wiley:location=\"equation/jgt23217-math-0001.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>-dimensional hypercube <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0002\" wiley:location=\"equation/jgt23217-math-0002.png\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> is a graph with vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mi>n</mi>\n </msup>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0003\" wiley:location=\"equation/jgt23217-math-0003.png\"><mrow><mrow><msup><mrow><mo class=\"MathClass-open\">{</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo class=\"MathClass-close\">}</mo></mrow><mi>n</mi></msup></mrow></mrow></math></annotation>\n </semantics></math> such that there is an edge between two vertices if and only if they differ in exactly one coordinate. For any graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0004\" wiley:location=\"equation/jgt23217-math-0004.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>, define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mstyle>\n <mspace></mspace>\n \n <mtext>ex</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0005\" wiley:location=\"equation/jgt23217-math-0005.png\"><mrow><mrow><mstyle><mspace width=\"0.1em\"/><mtext>ex</mtext><mspace width=\"0.1em\"/></mstyle><mrow><mo>(</mo><mrow><msub><mi>Q</mi><mi>n</mi></msub><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> to be the maximum number of edges of a subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0006\" wiley:location=\"equation/jgt23217-math-0006.png\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> without a copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0007\" wiley:location=\"equation/jgt23217-math-0007.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>. In this short note, we prove that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0008\" wiley:location=\"equation/jgt23217-math-0008.png\"><mrow><mrow><mi>n</mi><mo>\\unicode{x02208}</mo><mi mathvariant=\"double-struck\">N</mi></mrow></mrow></math></annotation>\n </semantics></math>,\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>ex</mtext>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>10</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mn>0.024</mn>\n \n <mo>⋅</mo>\n \n <mi>e</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0009\" display=\"block\" wiley:location=\"equation/jgt23217-math-0009.png\"><mrow><mrow><mspace width=\"0.1em\"/><mtext>ex</mtext><mspace width=\"0.1em\"/><mrow><mo>(</mo><msub><mi>Q</mi><mi>n</mi></msub><mo>,</mo><msub><mi>C</mi><mn>10</mn></msub><mo>)</mo></mrow><mo>\\unicode{x0003E}</mo><mn>0.024</mn><mo>\\unicode{x022C5}</mo><mi>e</mi><mrow><mo>(</mo><msub><mi>Q</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>,</mo></mrow></mrow></math></annotation>\n </semantics></math></span><span></span></div> where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0010\" wiley:location=\"equation/jgt23217-math-0010.png\"><mrow><mrow><mi>e</mi><mrow><mo>(</mo><msub><mi>Q</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is the number of edges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0011\" wiley:location=\"equation/jgt23217-math-0011.png\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\n </semantics></math>. Our construction is strongly inspired by the recent breakthrough work of Ellis, Ivan, and Leader, who showed that ‘daisy’ hypergraphs have positive Turán density with an extremely clever and simple linear-algebraic argument.\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"31-34"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C10 Has Positive Turán Density in the Hypercube\",\"authors\":\"Alexandr Grebennikov, João Pedro Marciano\",\"doi\":\"10.1002/jgt.23217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0001\\\" wiley:location=\\\"equation/jgt23217-math-0001.png\\\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math>-dimensional hypercube <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0002\\\" wiley:location=\\\"equation/jgt23217-math-0002.png\\\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> is a graph with vertex set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0003\\\" wiley:location=\\\"equation/jgt23217-math-0003.png\\\"><mrow><mrow><msup><mrow><mo class=\\\"MathClass-open\\\">{</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo class=\\\"MathClass-close\\\">}</mo></mrow><mi>n</mi></msup></mrow></mrow></math></annotation>\\n </semantics></math> such that there is an edge between two vertices if and only if they differ in exactly one coordinate. For any graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0004\\\" wiley:location=\\\"equation/jgt23217-math-0004.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>, define <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>ex</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0005\\\" wiley:location=\\\"equation/jgt23217-math-0005.png\\\"><mrow><mrow><mstyle><mspace width=\\\"0.1em\\\"/><mtext>ex</mtext><mspace width=\\\"0.1em\\\"/></mstyle><mrow><mo>(</mo><mrow><msub><mi>Q</mi><mi>n</mi></msub><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> to be the maximum number of edges of a subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0006\\\" wiley:location=\\\"equation/jgt23217-math-0006.png\\\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> without a copy of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0007\\\" wiley:location=\\\"equation/jgt23217-math-0007.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>. In this short note, we prove that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0008\\\" wiley:location=\\\"equation/jgt23217-math-0008.png\\\"><mrow><mrow><mi>n</mi><mo>\\\\unicode{x02208}</mo><mi mathvariant=\\\"double-struck\\\">N</mi></mrow></mrow></math></annotation>\\n </semantics></math>,\\n\\n </p><div><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>ex</mtext>\\n <mspace></mspace>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mn>10</mn>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>></mo>\\n \\n <mn>0.024</mn>\\n \\n <mo>⋅</mo>\\n \\n <mi>e</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0009\\\" display=\\\"block\\\" wiley:location=\\\"equation/jgt23217-math-0009.png\\\"><mrow><mrow><mspace width=\\\"0.1em\\\"/><mtext>ex</mtext><mspace width=\\\"0.1em\\\"/><mrow><mo>(</mo><msub><mi>Q</mi><mi>n</mi></msub><mo>,</mo><msub><mi>C</mi><mn>10</mn></msub><mo>)</mo></mrow><mo>\\\\unicode{x0003E}</mo><mn>0.024</mn><mo>\\\\unicode{x022C5}</mo><mi>e</mi><mrow><mo>(</mo><msub><mi>Q</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>,</mo></mrow></mrow></math></annotation>\\n </semantics></math></span><span></span></div> where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>e</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0010\\\" wiley:location=\\\"equation/jgt23217-math-0010.png\\\"><mrow><mrow><mi>e</mi><mrow><mo>(</mo><msub><mi>Q</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is the number of edges of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23217:jgt23217-math-0011\\\" wiley:location=\\\"equation/jgt23217-math-0011.png\\\"><mrow><mrow><msub><mi>Q</mi><mi>n</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math>. Our construction is strongly inspired by the recent breakthrough work of Ellis, Ivan, and Leader, who showed that ‘daisy’ hypergraphs have positive Turán density with an extremely clever and simple linear-algebraic argument.\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"31-34\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23217\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23217","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用