求助PDF
{"title":"图的弱彩虹饱和数","authors":"Xihe Li, Jie Ma, Tianying Xie","doi":"10.1002/jgt.23211","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a fixed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0001\" wiley:location=\"equation/jgt23211-math-0001.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>, we say that an edge-colored graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0002\" wiley:location=\"equation/jgt23211-math-0002.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> is <i>weakly</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0003\" wiley:location=\"equation/jgt23211-math-0003.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>-<i>rainbow saturated</i> if there exists an ordering <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>e</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0004\" wiley:location=\"equation/jgt23211-math-0004.png\"><mrow><mrow><msub><mi>e</mi><mn>1</mn></msub><mo>,</mo><msub><mi>e</mi><mn>2</mn></msub><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>e</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0005\" wiley:location=\"equation/jgt23211-math-0005.png\"><mrow><mrow><mi>E</mi><mrow><mo stretchy=\"false\">(</mo><mover accent=\"true\"><mi>G</mi><mo stretchy=\"true\">\\unicode{x000AF}</mo></mover><mo stretchy=\"false\">)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> such that, for any list <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0006\" wiley:location=\"equation/jgt23211-math-0006.png\"><mrow><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>c</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> of pairwise distinct colors from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0007\" wiley:location=\"equation/jgt23211-math-0007.png\"><mrow><mrow><mi mathvariant=\"double-struck\">N</mi></mrow></mrow></math></annotation>\n </semantics></math>, the nonedges <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>e</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0008\" wiley:location=\"equation/jgt23211-math-0008.png\"><mrow><mrow><msub><mi>e</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> in color <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0009\" wiley:location=\"equation/jgt23211-math-0009.png\"><mrow><mrow><msub><mi>c</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> can be added to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0010\" wiley:location=\"equation/jgt23211-math-0010.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>, one at a time, so that every added edge creates a new rainbow copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0011\" wiley:location=\"equation/jgt23211-math-0011.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>. The <i>weak rainbow saturation number</i> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0012\" wiley:location=\"equation/jgt23211-math-0012.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>rwsat</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0013\" wiley:location=\"equation/jgt23211-math-0013.png\"><mrow><mrow><mtext>rwsat</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>, is the minimum number of edges in a weakly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0014\" wiley:location=\"equation/jgt23211-math-0014.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>-rainbow saturated graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0015\" wiley:location=\"equation/jgt23211-math-0015.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math> vertices. In this paper, we show that for any nonempty graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0016\" wiley:location=\"equation/jgt23211-math-0016.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>, the limit <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>lim</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>→</mo>\n \n <mi>∞</mi>\n </mrow>\n </msub>\n \n <mfrac>\n <mrow>\n <mtext>rwsat</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mi>n</mi>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0017\" wiley:location=\"equation/jgt23211-math-0017.png\"><mrow><mrow><msub><mi>lim</mi><mrow><mi>n</mi><mo>\\unicode{x02192}</mo><mi>\\unicode{x0221E}</mi></mrow></msub><mfrac><mrow><mtext>rwsat</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow><mi>n</mi></mfrac></mrow></mrow></math></annotation>\n </semantics></math> exists. This answers a question of Behague et al. We also provide lower and upper bounds on this limit, and in particular, we show that this limit is nonzero if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0018\" wiley:location=\"equation/jgt23211-math-0018.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> contains no pendant edges.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"35-42"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Rainbow Saturation Numbers of Graphs\",\"authors\":\"Xihe Li, Jie Ma, Tianying Xie\",\"doi\":\"10.1002/jgt.23211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For a fixed graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0001\\\" wiley:location=\\\"equation/jgt23211-math-0001.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>, we say that an edge-colored graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0002\\\" wiley:location=\\\"equation/jgt23211-math-0002.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> is <i>weakly</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0003\\\" wiley:location=\\\"equation/jgt23211-math-0003.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>-<i>rainbow saturated</i> if there exists an ordering <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0004\\\" wiley:location=\\\"equation/jgt23211-math-0004.png\\\"><mrow><mrow><msub><mi>e</mi><mn>1</mn></msub><mo>,</mo><msub><mi>e</mi><mn>2</mn></msub><mo>,</mo><mo>\\\\unicode{x02026}</mo><mo>,</mo><msub><mi>e</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mover>\\n <mi>G</mi>\\n \\n <mo>¯</mo>\\n </mover>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0005\\\" wiley:location=\\\"equation/jgt23211-math-0005.png\\\"><mrow><mrow><mi>E</mi><mrow><mo stretchy=\\\"false\\\">(</mo><mover accent=\\\"true\\\"><mi>G</mi><mo stretchy=\\\"true\\\">\\\\unicode{x000AF}</mo></mover><mo stretchy=\\\"false\\\">)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> such that, for any list <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0006\\\" wiley:location=\\\"equation/jgt23211-math-0006.png\\\"><mrow><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>,</mo><mo>\\\\unicode{x02026}</mo><mo>,</mo><msub><mi>c</mi><mi>m</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> of pairwise distinct colors from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0007\\\" wiley:location=\\\"equation/jgt23211-math-0007.png\\\"><mrow><mrow><mi mathvariant=\\\"double-struck\\\">N</mi></mrow></mrow></math></annotation>\\n </semantics></math>, the nonedges <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0008\\\" wiley:location=\\\"equation/jgt23211-math-0008.png\\\"><mrow><mrow><msub><mi>e</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> in color <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0009\\\" wiley:location=\\\"equation/jgt23211-math-0009.png\\\"><mrow><mrow><msub><mi>c</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> can be added to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0010\\\" wiley:location=\\\"equation/jgt23211-math-0010.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math>, one at a time, so that every added edge creates a new rainbow copy of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0011\\\" wiley:location=\\\"equation/jgt23211-math-0011.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>. The <i>weak rainbow saturation number</i> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0012\\\" wiley:location=\\\"equation/jgt23211-math-0012.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>rwsat</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0013\\\" wiley:location=\\\"equation/jgt23211-math-0013.png\\\"><mrow><mrow><mtext>rwsat</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>, is the minimum number of edges in a weakly <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0014\\\" wiley:location=\\\"equation/jgt23211-math-0014.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>-rainbow saturated graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0015\\\" wiley:location=\\\"equation/jgt23211-math-0015.png\\\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math> vertices. In this paper, we show that for any nonempty graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0016\\\" wiley:location=\\\"equation/jgt23211-math-0016.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>, the limit <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>lim</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>→</mo>\\n \\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n \\n <mfrac>\\n <mrow>\\n <mtext>rwsat</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mi>n</mi>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0017\\\" wiley:location=\\\"equation/jgt23211-math-0017.png\\\"><mrow><mrow><msub><mi>lim</mi><mrow><mi>n</mi><mo>\\\\unicode{x02192}</mo><mi>\\\\unicode{x0221E}</mi></mrow></msub><mfrac><mrow><mtext>rwsat</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow><mi>n</mi></mfrac></mrow></mrow></math></annotation>\\n </semantics></math> exists. This answers a question of Behague et al. We also provide lower and upper bounds on this limit, and in particular, we show that this limit is nonzero if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0018\\\" wiley:location=\\\"equation/jgt23211-math-0018.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> contains no pendant edges.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"35-42\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23211\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23211","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用