图的弱彩虹饱和数

IF 0.9 3区 数学 Q2 MATHEMATICS
Xihe Li, Jie Ma, Tianying Xie
{"title":"图的弱彩虹饱和数","authors":"Xihe Li,&nbsp;Jie Ma,&nbsp;Tianying Xie","doi":"10.1002/jgt.23211","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a fixed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0001\" wiley:location=\"equation/jgt23211-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, we say that an edge-colored graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0002\" wiley:location=\"equation/jgt23211-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is <i>weakly</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0003\" wiley:location=\"equation/jgt23211-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-<i>rainbow saturated</i> if there exists an ordering <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>e</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>e</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0004\" wiley:location=\"equation/jgt23211-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0005\" wiley:location=\"equation/jgt23211-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mover accent=\"true\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo stretchy=\"true\"&gt;\\unicode{x000AF}&lt;/mo&gt;&lt;/mover&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> such that, for any list <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0006\" wiley:location=\"equation/jgt23211-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of pairwise distinct colors from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0007\" wiley:location=\"equation/jgt23211-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"double-struck\"&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, the nonedges <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>e</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0008\" wiley:location=\"equation/jgt23211-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> in color <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0009\" wiley:location=\"equation/jgt23211-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> can be added to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0010\" wiley:location=\"equation/jgt23211-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, one at a time, so that every added edge creates a new rainbow copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0011\" wiley:location=\"equation/jgt23211-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. The <i>weak rainbow saturation number</i> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0012\" wiley:location=\"equation/jgt23211-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>rwsat</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0013\" wiley:location=\"equation/jgt23211-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mtext&gt;rwsat&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, is the minimum number of edges in a weakly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0014\" wiley:location=\"equation/jgt23211-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-rainbow saturated graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0015\" wiley:location=\"equation/jgt23211-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> vertices. In this paper, we show that for any nonempty graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0016\" wiley:location=\"equation/jgt23211-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, the limit <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>lim</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>→</mo>\n \n <mi>∞</mi>\n </mrow>\n </msub>\n \n <mfrac>\n <mrow>\n <mtext>rwsat</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mi>n</mi>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0017\" wiley:location=\"equation/jgt23211-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\unicode{x02192}&lt;/mo&gt;&lt;mi&gt;\\unicode{x0221E}&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mtext&gt;rwsat&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> exists. This answers a question of Behague et al. We also provide lower and upper bounds on this limit, and in particular, we show that this limit is nonzero if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0018\" wiley:location=\"equation/jgt23211-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> contains no pendant edges.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"35-42"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Rainbow Saturation Numbers of Graphs\",\"authors\":\"Xihe Li,&nbsp;Jie Ma,&nbsp;Tianying Xie\",\"doi\":\"10.1002/jgt.23211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For a fixed graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0001\\\" wiley:location=\\\"equation/jgt23211-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, we say that an edge-colored graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0002\\\" wiley:location=\\\"equation/jgt23211-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is <i>weakly</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0003\\\" wiley:location=\\\"equation/jgt23211-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-<i>rainbow saturated</i> if there exists an ordering <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>e</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0004\\\" wiley:location=\\\"equation/jgt23211-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mover>\\n <mi>G</mi>\\n \\n <mo>¯</mo>\\n </mover>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0005\\\" wiley:location=\\\"equation/jgt23211-math-0005.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo stretchy=\\\"false\\\"&gt;(&lt;/mo&gt;&lt;mover accent=\\\"true\\\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo stretchy=\\\"true\\\"&gt;\\\\unicode{x000AF}&lt;/mo&gt;&lt;/mover&gt;&lt;mo stretchy=\\\"false\\\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> such that, for any list <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0006\\\" wiley:location=\\\"equation/jgt23211-math-0006.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> of pairwise distinct colors from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0007\\\" wiley:location=\\\"equation/jgt23211-math-0007.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"double-struck\\\"&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, the nonedges <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>e</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0008\\\" wiley:location=\\\"equation/jgt23211-math-0008.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> in color <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0009\\\" wiley:location=\\\"equation/jgt23211-math-0009.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> can be added to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0010\\\" wiley:location=\\\"equation/jgt23211-math-0010.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, one at a time, so that every added edge creates a new rainbow copy of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0011\\\" wiley:location=\\\"equation/jgt23211-math-0011.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. The <i>weak rainbow saturation number</i> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0012\\\" wiley:location=\\\"equation/jgt23211-math-0012.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>rwsat</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0013\\\" wiley:location=\\\"equation/jgt23211-math-0013.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mtext&gt;rwsat&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, is the minimum number of edges in a weakly <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0014\\\" wiley:location=\\\"equation/jgt23211-math-0014.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-rainbow saturated graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0015\\\" wiley:location=\\\"equation/jgt23211-math-0015.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> vertices. In this paper, we show that for any nonempty graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0016\\\" wiley:location=\\\"equation/jgt23211-math-0016.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, the limit <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>lim</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>→</mo>\\n \\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n \\n <mfrac>\\n <mrow>\\n <mtext>rwsat</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mi>n</mi>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0017\\\" wiley:location=\\\"equation/jgt23211-math-0017.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02192}&lt;/mo&gt;&lt;mi&gt;\\\\unicode{x0221E}&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mtext&gt;rwsat&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> exists. This answers a question of Behague et al. We also provide lower and upper bounds on this limit, and in particular, we show that this limit is nonzero if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0018\\\" wiley:location=\\\"equation/jgt23211-math-0018.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> contains no pendant edges.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"35-42\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23211\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23211","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于固定图H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0001" wiley:location="equation/jgt23211-math-0001.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;,我们说边色图G&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0002" wiley:location="equation/jgt23211-math-0002.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;是弱H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0003" wiley:location="equation/jgt23211-math-0003.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;-彩虹饱和,如果存在有序的e1 e2,... ,e m &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0004”威利:位置= "方程/ jgt23211 -数学- 0004. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; e&lt; / mi&gt; & lt; mn&gt; 1 & lt; / mn&gt; & lt; / msub&gt; & lt; mo&gt; & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; e&lt; / mi&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / msub&gt; & lt; mo&gt; & lt; / mo&gt; & lt; mo&gt; \ unicode {x02026} & lt; / mo&gt; & lt; mo&gt; & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; e&lt; / mi&gt; & lt; mi&gt; m&lt; / mi&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;of E (G¯)&lt;math xmlns=“http://www.w3.org/1998/Math/MathML”altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0005 .png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; mrow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; morow&gt;&lt; mostretchy ="true"&gt; (&lt;/ morow&gt;&lt;/ morow&gt;&lt;/ morow&gt;&lt;/ morow&gt;&lt;/ morow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;;对于任意列表c1 c2,... ,c m &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0006”威利:位置= "方程/ jgt23211 -数学- 0006. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; c&lt; / mi&gt; & lt; mn&gt; 1 & lt; / mn&gt; & lt; / msub&gt; & lt; mo&gt; & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; c&lt; / mi&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / msub&gt; & lt; mo&gt; & lt; / mo&gt; & lt; mo&gt; \ unicode {x02026} & lt; / mo&gt; & lt; mo&gt; & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; c&lt; / mi&gt; & lt; mi&gt; m&lt; / mi&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;从N &lt;math xmlns="http://www.w3。 png”&gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; H&lt / mi&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;,极限lim n→∞rwsat(n,math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0017”魏:地方= "方程/ jgt23211-math-0017.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msub&gt; &lt mi&gt; lim&lt / mi&gt; &lt; mrow&gt &lt; mi&gt; n&lt / mi&gt; &lt; mo&gt \ unicode {x02192 &lt; / mo&gt; &lt; mi&gt \ unicode {x0221E &lt; / mi&gt; &lt / mrow&gt; &lt; / msub&gt &lt; mfrac&gt; &lt mrow&gt; &lt; mtext&gt rwsat&lt; / mtext&gt; &lt mrow&gt; &lt; mo&gt (&lt; / mo&gt &lt; mrow&gt; &lt mi&gt; n&lt / mi&gt; &lt; mo&gt &lt; / mo&gt; &lt; mi&gt H&lt; / mi&gt; &lt / mrow&gt; &lt; mo&gt) &lt; / mo&gt; &lt / mrow&gt; &lt / mrow&gt; &lt; mi&gt n&lt; / mi&gt &lt; / mfrac&gt; &lt / mrow&gt; &lt; / mrow&gt &lt / math&gt;exists .这回答了Behague等人的一个问题。我们还提供了这个限制的下限和上限,特别是,我们节目都更加确信这种限制是nonzero if and only if H & lt;计算xmlns = " http://www.w3.org/1998/Math/MathML altimg = " urn: x-wiley 03649024:媒体:jgt23211: jgt23211-math-0018“魏:地方=方程/ jgt23211-math-0018.png &gt; &lt; mrow&gt &lt; mrow&gt &lt; mi&gt; H&lt / mi&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;不包含垂边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak Rainbow Saturation Numbers of Graphs

For a fixed graph H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0001" wiley:location="equation/jgt23211-math-0001.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> , we say that an edge-colored graph G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0002" wiley:location="equation/jgt23211-math-0002.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> is weakly H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0003" wiley:location="equation/jgt23211-math-0003.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> -rainbow saturated if there exists an ordering e 1 , e 2 , , e m <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0004" wiley:location="equation/jgt23211-math-0004.png"><mrow><mrow><msub><mi>e</mi><mn>1</mn></msub><mo>,</mo><msub><mi>e</mi><mn>2</mn></msub><mo>,</mo><mo>\unicode{x02026}</mo><mo>,</mo><msub><mi>e</mi><mi>m</mi></msub></mrow></mrow></math> of E ( G ¯ ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0005" wiley:location="equation/jgt23211-math-0005.png"><mrow><mrow><mi>E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>G</mi><mo stretchy="true">\unicode{x000AF}</mo></mover><mo stretchy="false">)</mo></mrow></mrow></mrow></math> such that, for any list c 1 , c 2 , , c m <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0006" wiley:location="equation/jgt23211-math-0006.png"><mrow><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>,</mo><mo>\unicode{x02026}</mo><mo>,</mo><msub><mi>c</mi><mi>m</mi></msub></mrow></mrow></math> of pairwise distinct colors from N <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0007" wiley:location="equation/jgt23211-math-0007.png"><mrow><mrow><mi mathvariant="double-struck">N</mi></mrow></mrow></math> , the nonedges e i <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0008" wiley:location="equation/jgt23211-math-0008.png"><mrow><mrow><msub><mi>e</mi><mi>i</mi></msub></mrow></mrow></math> in color c i <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0009" wiley:location="equation/jgt23211-math-0009.png"><mrow><mrow><msub><mi>c</mi><mi>i</mi></msub></mrow></mrow></math> can be added to G <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0010" wiley:location="equation/jgt23211-math-0010.png"><mrow><mrow><mi>G</mi></mrow></mrow></math> , one at a time, so that every added edge creates a new rainbow copy of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0011" wiley:location="equation/jgt23211-math-0011.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . The weak rainbow saturation number of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0012" wiley:location="equation/jgt23211-math-0012.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> , denoted by rwsat ( n , H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0013" wiley:location="equation/jgt23211-math-0013.png"><mrow><mrow><mtext>rwsat</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> , is the minimum number of edges in a weakly H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0014" wiley:location="equation/jgt23211-math-0014.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> -rainbow saturated graph on n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0015" wiley:location="equation/jgt23211-math-0015.png"><mrow><mrow><mi>n</mi></mrow></mrow></math> vertices. In this paper, we show that for any nonempty graph H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0016" wiley:location="equation/jgt23211-math-0016.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> , the limit lim n rwsat ( n , H ) n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0017" wiley:location="equation/jgt23211-math-0017.png"><mrow><mrow><msub><mi>lim</mi><mrow><mi>n</mi><mo>\unicode{x02192}</mo><mi>\unicode{x0221E}</mi></mrow></msub><mfrac><mrow><mtext>rwsat</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>H</mi></mrow><mo>)</mo></mrow></mrow><mi>n</mi></mfrac></mrow></mrow></math> exists. This answers a question of Behague et al. We also provide lower and upper bounds on this limit, and in particular, we show that this limit is nonzero if and only if H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23211:jgt23211-math-0018" wiley:location="equation/jgt23211-math-0018.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> contains no pendant edges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信