正共度Turán C5和C5−的数量

IF 0.9 3区 数学 Q2 MATHEMATICS
Zhuo Wu
{"title":"正共度Turán C5和C5−的数量","authors":"Zhuo Wu","doi":"10.1002/jgt.23206","DOIUrl":null,"url":null,"abstract":"<p>The <i>minimum positive co-degree</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0001\" wiley:location=\"equation/jgt23206-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;\\unicode{x003B4}&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> of a nonempty <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0002\" wiley:location=\"equation/jgt23206-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0003\" wiley:location=\"equation/jgt23206-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is the maximum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0004\" wiley:location=\"equation/jgt23206-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0005\" wiley:location=\"equation/jgt23206-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0006\" wiley:location=\"equation/jgt23206-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-set contained in a hyperedge of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0007\" wiley:location=\"equation/jgt23206-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0008\" wiley:location=\"equation/jgt23206-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0009\" wiley:location=\"equation/jgt23206-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> hyperedges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0010\" wiley:location=\"equation/jgt23206-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. For any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0011\" wiley:location=\"equation/jgt23206-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0012\" wiley:location=\"equation/jgt23206-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, the <i>positive degree Turán number</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0013\" wiley:location=\"equation/jgt23206-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mtext&gt;co&lt;/mtext&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;/msup&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is defined as the maximum value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0014\" wiley:location=\"equation/jgt23206-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;\\unicode{x003B4}&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> over all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0015\" wiley:location=\"equation/jgt23206-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0016\" wiley:location=\"equation/jgt23206-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-free nonempty <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0017\" wiley:location=\"equation/jgt23206-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0018\" wiley:location=\"equation/jgt23206-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. In this paper, we determine the positive degree Turán number for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0019\" wiley:location=\"equation/jgt23206-math-0019.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>C</mi>\n \n <mn>5</mn>\n \n <mo>−</mo>\n </msubsup>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0020\" wiley:location=\"equation/jgt23206-math-0020.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"25-30"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23206","citationCount":"0","resultStr":"{\"title\":\"Positive Co-Degree Turán Number for C5 and C5−\",\"authors\":\"Zhuo Wu\",\"doi\":\"10.1002/jgt.23206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>minimum positive co-degree</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0001\\\" wiley:location=\\\"equation/jgt23206-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;\\\\unicode{x003B4}&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;\\\\unicode{x0002B}&lt;/mo&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> of a nonempty <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0002\\\" wiley:location=\\\"equation/jgt23206-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0003\\\" wiley:location=\\\"equation/jgt23206-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is the maximum <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0004\\\" wiley:location=\\\"equation/jgt23206-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> such that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0005\\\" wiley:location=\\\"equation/jgt23206-math-0005.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0006\\\" wiley:location=\\\"equation/jgt23206-math-0006.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-set contained in a hyperedge of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0007\\\" wiley:location=\\\"equation/jgt23206-math-0007.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0008\\\" wiley:location=\\\"equation/jgt23206-math-0008.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is contained in at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0009\\\" wiley:location=\\\"equation/jgt23206-math-0009.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> hyperedges of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0010\\\" wiley:location=\\\"equation/jgt23206-math-0010.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. For any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0011\\\" wiley:location=\\\"equation/jgt23206-math-0011.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0012\\\" wiley:location=\\\"equation/jgt23206-math-0012.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, the <i>positive degree Turán number</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mtext>co</mtext>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0013\\\" wiley:location=\\\"equation/jgt23206-math-0013.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mtext&gt;co&lt;/mtext&gt;&lt;mo&gt;\\\\unicode{x0002B}&lt;/mo&gt;&lt;/msup&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is defined as the maximum value of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0014\\\" wiley:location=\\\"equation/jgt23206-math-0014.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;\\\\unicode{x003B4}&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;\\\\unicode{x0002B}&lt;/mo&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> over all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0015\\\" wiley:location=\\\"equation/jgt23206-math-0015.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0016\\\" wiley:location=\\\"equation/jgt23206-math-0016.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-free nonempty <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0017\\\" wiley:location=\\\"equation/jgt23206-math-0017.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0018\\\" wiley:location=\\\"equation/jgt23206-math-0018.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. In this paper, we determine the positive degree Turán number for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0019\\\" wiley:location=\\\"equation/jgt23206-math-0019.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n \\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0020\\\" wiley:location=\\\"equation/jgt23206-math-0020.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x02212}&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"25-30\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23206\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23206\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

png”&gt; &lt; mrow&gt &lt; mrow&gt; &lt mi&gt; n&lt / mi&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;-vertex F&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0016" wiley:location="equation/jgt23206-math-0016.png"&gt;&lt;-free nonempty r&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0017" wiley:location="equation/jgt23206-math-0017.png"&gt;&lt;mrow&gt;-graphs H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0018" wiley:location="equation/jgt23206-math-0018.png"&gt;&lt;mrow&gt;&lt;.在这篇论文中,我们确定c5的正度Turan数&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0019”魏:地方= "方程/ jgt23206-math-0019.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msub&gt; &lt; mi&gt C&lt; / mi&gt; &lt mn&gt; 5&lt; / mn&gt &lt; / msub&gt; &lt / mrow&gt; &lt; / mrow&gt &lt / math&gt;和C 5−&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0020”魏:地方= "方程/ jgt23206-math-0020.png &gt; &lt; mrow&gt &lt; mrow&gt; &lt msubsup&gt; &lt; mi&gt C&lt; / mi&gt; &lt mn&gt; 5&lt / mn&gt; &lt; mo&gt \ unicode {x02212 &lt; / mo&gt; &lt / msubsup&gt; &lt; / mrow&gt &lt; / mrow&gt; &lt / math&gt;.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive Co-Degree Turán Number for C5 and C5−

The minimum positive co-degree δ r 1 + ( H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0001" wiley:location="equation/jgt23206-math-0001.png"><mrow><mrow><msubsup><mi>\unicode{x003B4}</mi><mrow><mi>r</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mo>\unicode{x0002B}</mo></msubsup><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math> of a nonempty r <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0002" wiley:location="equation/jgt23206-math-0002.png"><mrow><mrow><mi>r</mi></mrow></mrow></math> -graph H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0003" wiley:location="equation/jgt23206-math-0003.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> is the maximum k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0004" wiley:location="equation/jgt23206-math-0004.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> such that if S <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0005" wiley:location="equation/jgt23206-math-0005.png"><mrow><mrow><mi>S</mi></mrow></mrow></math> is an ( r 1 ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0006" wiley:location="equation/jgt23206-math-0006.png"><mrow><mrow><mrow><mo>(</mo><mrow><mi>r</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></mrow></math> -set contained in a hyperedge of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0007" wiley:location="equation/jgt23206-math-0007.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> , then S <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0008" wiley:location="equation/jgt23206-math-0008.png"><mrow><mrow><mi>S</mi></mrow></mrow></math> is contained in at least k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0009" wiley:location="equation/jgt23206-math-0009.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> hyperedges of H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0010" wiley:location="equation/jgt23206-math-0010.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . For any r <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0011" wiley:location="equation/jgt23206-math-0011.png"><mrow><mrow><mi>r</mi></mrow></mrow></math> -graph F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0012" wiley:location="equation/jgt23206-math-0012.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> , the positive degree Turán number co + ex ( n , F ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0013" wiley:location="equation/jgt23206-math-0013.png"><mrow><mrow><msup><mtext>co</mtext><mo>\unicode{x0002B}</mo></msup><mtext>ex</mtext><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> is defined as the maximum value of δ r 1 + ( H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0014" wiley:location="equation/jgt23206-math-0014.png"><mrow><mrow><msubsup><mi>\unicode{x003B4}</mi><mrow><mi>r</mi><mo>\unicode{x02212}</mo><mn>1</mn></mrow><mo>\unicode{x0002B}</mo></msubsup><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math> over all n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0015" wiley:location="equation/jgt23206-math-0015.png"><mrow><mrow><mi>n</mi></mrow></mrow></math> -vertex F <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0016" wiley:location="equation/jgt23206-math-0016.png"><mrow><mrow><mi>F</mi></mrow></mrow></math> -free nonempty r <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0017" wiley:location="equation/jgt23206-math-0017.png"><mrow><mrow><mi>r</mi></mrow></mrow></math> -graphs H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0018" wiley:location="equation/jgt23206-math-0018.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . In this paper, we determine the positive degree Turán number for C 5 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0019" wiley:location="equation/jgt23206-math-0019.png"><mrow><mrow><msub><mi>C</mi><mn>5</mn></msub></mrow></mrow></math> and C 5 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23206:jgt23206-math-0020" wiley:location="equation/jgt23206-math-0020.png"><mrow><mrow><msubsup><mi>C</mi><mn>5</mn><mo>\unicode{x02212}</mo></msubsup></mrow></mrow></math> .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信