求助PDF
{"title":"Teufl-Wagner公式的一种变体及其应用","authors":"Danyi Li, Weigen Yan","doi":"10.1002/jgt.23220","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0001\" wiley:location=\"equation/jgt23220-math-0001.png\"><mrow><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0002\" wiley:location=\"equation/jgt23220-math-0002.png\"><mrow><mrow><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> be two electrically equivalent edge-weighted connected graphs with respect to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0003\" wiley:location=\"equation/jgt23220-math-0003.png\"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> (hence <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0004\" wiley:location=\"equation/jgt23220-math-0004.png\"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\unicode{x02286}</mo><mi>V</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math>). Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>∪</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>∪</mo>\n \n <mo>⋯</mo>\n <mspace></mspace>\n \n <mo>∪</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>c</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0005\" wiley:location=\"equation/jgt23220-math-0005.png\"><mrow><mrow><mi>F</mi><mo>=</mo><msub><mi>T</mi><mn>1</mn></msub><mo>\\unicode{x0222A}</mo><msub><mi>T</mi><mn>2</mn></msub><mo>\\unicode{x0222A}</mo><mo>\\unicode{x022EF}</mo><mspace width=\"0.25em\"/><mo>\\unicode{x0222A}</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> be a forest in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0006\" wiley:location=\"equation/jgt23220-math-0006.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math>. Denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0007\" wiley:location=\"equation/jgt23220-math-0007.png\"><mrow><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> the sum of weights of spanning trees of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0008\" wiley:location=\"equation/jgt23220-math-0008.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> and by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0009\" wiley:location=\"equation/jgt23220-math-0009.png\"><mrow><mrow><msub><mi>t</mi><mi>F</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> the sum of weights of spanning trees each of which containing all edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0010\" wiley:location=\"equation/jgt23220-math-0010.png\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\n </semantics></math>, where the weight <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0011\" wiley:location=\"equation/jgt23220-math-0011.png\"><mrow><mrow><mi>\\unicode{x003C9}</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> of a subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0012\" wiley:location=\"equation/jgt23220-math-0012.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0013\" wiley:location=\"equation/jgt23220-math-0013.png\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\n </semantics></math> is the product of weights of edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0014\" wiley:location=\"equation/jgt23220-math-0014.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>. Suppose that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>⋅</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0015\" wiley:location=\"equation/jgt23220-math-0015.png\"><mrow><mrow><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>\\unicode{x022C5}</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is the edge-weighted graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0016\" wiley:location=\"equation/jgt23220-math-0016.png\"><mrow><mrow><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup></mrow></mrow></math></annotation>\n </semantics></math> by identifying all vertices in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0017\" wiley:location=\"equation/jgt23220-math-0017.png\"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><msub><mi>T</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0018\" wiley:location=\"equation/jgt23220-math-0018.png\"><mrow><mrow><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup></mrow></mrow></math></annotation>\n </semantics></math> into a new vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>u</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0019\" wiley:location=\"equation/jgt23220-math-0019.png\"><mrow><mrow><msub><mi>u</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0020\" wiley:location=\"equation/jgt23220-math-0020.png\"><mrow><mrow><mn>1</mn><mo>\\unicode{x02264}</mo><mi>i</mi><mo>\\unicode{x02264}</mo><mi>c</mi></mrow></mrow></math></annotation>\n </semantics></math>. In this paper, we obtain a variant of the Teufl-Wagner formula (Linear Alg Appl, 432 (2010), 441–457) and prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>=</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mo>*</mo>\n </msup>\n \n <mo>⋅</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0021\" wiley:location=\"equation/jgt23220-math-0021.png\"><mrow><mrow><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mi>t</mi><mi>F</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\unicode{x02215}</mo><mi>\\unicode{x003C9}</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mrow><mo>(</mo><mrow><msup><mi>G</mi><mo>\\unicode{x0002A}</mo></msup><mo>\\unicode{x022C5}</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac></mrow></mrow></math></annotation>\n </semantics></math>. As applications, we enumerate spanning trees of some graphs containing all edges in a given forest and give a simple proof of Moon's formula (Mathematika, 11 (1964), 95–98) and the Dong-Ge formula (J Graph Theory, 101 (2022), 79–94). In particular, we count spanning trees with a perfect matching in some graphs.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"68-75"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Variant of the Teufl-Wagner Formula and Applications\",\"authors\":\"Danyi Li, Weigen Yan\",\"doi\":\"10.1002/jgt.23220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0001\\\" wiley:location=\\\"equation/jgt23220-math-0001.png\\\"><mrow><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0002\\\" wiley:location=\\\"equation/jgt23220-math-0002.png\\\"><mrow><mrow><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> be two electrically equivalent edge-weighted connected graphs with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0003\\\" wiley:location=\\\"equation/jgt23220-math-0003.png\\\"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> (hence <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0004\\\" wiley:location=\\\"equation/jgt23220-math-0004.png\\\"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\\\unicode{x02286}</mo><mi>V</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math>). Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>∪</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>∪</mo>\\n \\n <mo>⋯</mo>\\n <mspace></mspace>\\n \\n <mo>∪</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>c</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0005\\\" wiley:location=\\\"equation/jgt23220-math-0005.png\\\"><mrow><mrow><mi>F</mi><mo>=</mo><msub><mi>T</mi><mn>1</mn></msub><mo>\\\\unicode{x0222A}</mo><msub><mi>T</mi><mn>2</mn></msub><mo>\\\\unicode{x0222A}</mo><mo>\\\\unicode{x022EF}</mo><mspace width=\\\"0.25em\\\"/><mo>\\\\unicode{x0222A}</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> be a forest in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0006\\\" wiley:location=\\\"equation/jgt23220-math-0006.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math>. Denote by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0007\\\" wiley:location=\\\"equation/jgt23220-math-0007.png\\\"><mrow><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> the sum of weights of spanning trees of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0008\\\" wiley:location=\\\"equation/jgt23220-math-0008.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> and by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0009\\\" wiley:location=\\\"equation/jgt23220-math-0009.png\\\"><mrow><mrow><msub><mi>t</mi><mi>F</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> the sum of weights of spanning trees each of which containing all edges in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0010\\\" wiley:location=\\\"equation/jgt23220-math-0010.png\\\"><mrow><mrow><mi>F</mi></mrow></mrow></math></annotation>\\n </semantics></math>, where the weight <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0011\\\" wiley:location=\\\"equation/jgt23220-math-0011.png\\\"><mrow><mrow><mi>\\\\unicode{x003C9}</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> of a subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0012\\\" wiley:location=\\\"equation/jgt23220-math-0012.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0013\\\" wiley:location=\\\"equation/jgt23220-math-0013.png\\\"><mrow><mrow><mi>G</mi></mrow></mrow></math></annotation>\\n </semantics></math> is the product of weights of edges in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0014\\\" wiley:location=\\\"equation/jgt23220-math-0014.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>. Suppose that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>⋅</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0015\\\" wiley:location=\\\"equation/jgt23220-math-0015.png\\\"><mrow><mrow><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>\\\\unicode{x022C5}</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is the edge-weighted graph obtained from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0016\\\" wiley:location=\\\"equation/jgt23220-math-0016.png\\\"><mrow><mrow><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup></mrow></mrow></math></annotation>\\n </semantics></math> by identifying all vertices in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0017\\\" wiley:location=\\\"equation/jgt23220-math-0017.png\\\"><mrow><mrow><mi>V</mi><mrow><mo>(</mo><msub><mi>T</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0018\\\" wiley:location=\\\"equation/jgt23220-math-0018.png\\\"><mrow><mrow><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup></mrow></mrow></math></annotation>\\n </semantics></math> into a new vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>u</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0019\\\" wiley:location=\\\"equation/jgt23220-math-0019.png\\\"><mrow><mrow><msub><mi>u</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>i</mi>\\n \\n <mo>≤</mo>\\n \\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0020\\\" wiley:location=\\\"equation/jgt23220-math-0020.png\\\"><mrow><mrow><mn>1</mn><mo>\\\\unicode{x02264}</mo><mi>i</mi><mo>\\\\unicode{x02264}</mo><mi>c</mi></mrow></mrow></math></annotation>\\n </semantics></math>. In this paper, we obtain a variant of the Teufl-Wagner formula (Linear Alg Appl, 432 (2010), 441–457) and prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n \\n <mo>=</mo>\\n \\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mo>⋅</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23220:jgt23220-math-0021\\\" wiley:location=\\\"equation/jgt23220-math-0021.png\\\"><mrow><mrow><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mrow><mo>(</mo><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mi>t</mi><mi>F</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\\\\unicode{x02215}</mo><mi>\\\\unicode{x003C9}</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mrow><mo>(</mo><mrow><msup><mi>G</mi><mo>\\\\unicode{x0002A}</mo></msup><mo>\\\\unicode{x022C5}</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac></mrow></mrow></math></annotation>\\n </semantics></math>. As applications, we enumerate spanning trees of some graphs containing all edges in a given forest and give a simple proof of Moon's formula (Mathematika, 11 (1964), 95–98) and the Dong-Ge formula (J Graph Theory, 101 (2022), 79–94). In particular, we count spanning trees with a perfect matching in some graphs.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"68-75\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23220\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用