超图的平衡独立集与着色

IF 0.9 3区 数学 Q2 MATHEMATICS
Abhishek Dhawan
{"title":"超图的平衡独立集与着色","authors":"Abhishek Dhawan","doi":"10.1002/jgt.23212","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001\" wiley:location=\"equation/jgt23212-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-uniform hypergraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002\" wiley:location=\"equation/jgt23212-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003\" wiley:location=\"equation/jgt23212-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-partite if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004\" wiley:location=\"equation/jgt23212-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> can be partitioned into <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005\" wiley:location=\"equation/jgt23212-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> sets <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006\" wiley:location=\"equation/jgt23212-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007\" wiley:location=\"equation/jgt23212-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> contains precisely one vertex from each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008\" wiley:location=\"equation/jgt23212-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. We call such a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0009\" wiley:location=\"equation/jgt23212-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-balanced if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0010\" wiley:location=\"equation/jgt23212-math-0010.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0011\" wiley:location=\"equation/jgt23212-math-0011.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. An independent set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>I</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0012\" wiley:location=\"equation/jgt23212-math-0012.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0013\" wiley:location=\"equation/jgt23212-math-0013.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is balanced if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>I</mi>\n \n <mo>∩</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>I</mi>\n \n <mo>∩</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0014\" wiley:location=\"equation/jgt23212-math-0014.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;\\unicode{x02229}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;\\unicode{x02229}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>⩽</mo>\n \n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>⩽</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0015\" wiley:location=\"equation/jgt23212-math-0015.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\unicode{x02A7D}&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;\\unicode{x02A7D}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, and a coloring is balanced if each color class induces a balanced independent set in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016\" wiley:location=\"equation/jgt23212-math-0016.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. In this paper, we provide a lower bound on the balanced independence number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>α</mi>\n \n <mi>b</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017\" wiley:location=\"equation/jgt23212-math-0017.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;\\unicode{x003B1}&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> in terms of the average degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mo>∣</mo>\n \n <mo>/</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018\" wiley:location=\"equation/jgt23212-math-0018.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>, and an upper bound on the balanced chromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>b</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019\" wiley:location=\"equation/jgt23212-math-0019.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;\\unicode{x003C7}&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020\" wiley:location=\"equation/jgt23212-math-0020.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;\\unicode{x00394}&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Our results recover those of recent work of Chakraborti for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021\" wiley:location=\"equation/jgt23212-math-0021.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"43-51"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23212","citationCount":"0","resultStr":"{\"title\":\"Balanced Independent Sets and Colorings of Hypergraphs\",\"authors\":\"Abhishek Dhawan\",\"doi\":\"10.1002/jgt.23212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001\\\" wiley:location=\\\"equation/jgt23212-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-uniform hypergraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002\\\" wiley:location=\\\"equation/jgt23212-math-0002.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003\\\" wiley:location=\\\"equation/jgt23212-math-0003.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-partite if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004\\\" wiley:location=\\\"equation/jgt23212-math-0004.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> can be partitioned into <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005\\\" wiley:location=\\\"equation/jgt23212-math-0005.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> sets <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>V</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006\\\" wiley:location=\\\"equation/jgt23212-math-0006.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;\\\\unicode{x02026}&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> such that every edge in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007\\\" wiley:location=\\\"equation/jgt23212-math-0007.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> contains precisely one vertex from each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>V</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008\\\" wiley:location=\\\"equation/jgt23212-math-0008.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. We call such a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0009\\\" wiley:location=\\\"equation/jgt23212-math-0009.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>-balanced if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0010\\\" wiley:location=\\\"equation/jgt23212-math-0010.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0011\\\" wiley:location=\\\"equation/jgt23212-math-0011.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. An independent set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0012\\\" wiley:location=\\\"equation/jgt23212-math-0012.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0013\\\" wiley:location=\\\"equation/jgt23212-math-0013.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> is balanced if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>I</mi>\\n \\n <mo>∩</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>I</mi>\\n \\n <mo>∩</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>j</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0014\\\" wiley:location=\\\"equation/jgt23212-math-0014.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02229}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02229}&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>⩽</mo>\\n \\n <mi>i</mi>\\n \\n <mo>,</mo>\\n \\n <mi>j</mi>\\n \\n <mo>⩽</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0015\\\" wiley:location=\\\"equation/jgt23212-math-0015.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x02A7D}&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02A7D}&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, and a coloring is balanced if each color class induces a balanced independent set in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016\\\" wiley:location=\\\"equation/jgt23212-math-0016.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. In this paper, we provide a lower bound on the balanced independence number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>α</mi>\\n \\n <mi>b</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017\\\" wiley:location=\\\"equation/jgt23212-math-0017.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;\\\\unicode{x003B1}&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> in terms of the average degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n \\n <mo>∣</mo>\\n \\n <mo>/</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018\\\" wiley:location=\\\"equation/jgt23212-math-0018.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02223}&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>, and an upper bound on the balanced chromatic number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>b</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019\\\" wiley:location=\\\"equation/jgt23212-math-0019.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;\\\\unicode{x003C7}&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> in terms of the maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020\\\" wiley:location=\\\"equation/jgt23212-math-0020.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;\\\\unicode{x00394}&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. Our results recover those of recent work of Chakraborti for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021\\\" wiley:location=\\\"equation/jgt23212-math-0021.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"43-51\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23212\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

A k&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001" wiley:location="equation/jgt23212-math-0001.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;-均匀超图H = (V,E) &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002”威利:位置= "方程/ jgt23212 -数学- 0002. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; E&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;is k&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003" wiley:location="equation/jgt23212-math-0003.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;-partite if V&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004 .png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;可以划分为k&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005" wiley:location="equation/jgt23212-math-0005.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;集合v1,…,V k &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006”威利:位置= "方程/ jgt23212 -数学- 0006. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mn&gt; 1 & lt; / mn&gt; & lt; / msub&gt; & lt; mo&gt; & lt; / mo&gt; & lt; mo&gt; \ unicode {x02026} & lt; / mo&gt; & lt; mo&gt; & lt; / mo&gt; & lt; msub&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;这样,E&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007" wiley:location="equation/jgt23212-math-0007.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;只包含每个V的一个顶点&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008”威利:位置= "方程/ jgt23212 -数学- 0008. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mi&gt; i&lt; / mi&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mn&gt; 1 & lt; / mn&gt; & lt; mo&gt; \ unicode {x02A7D} & lt; / mo&gt; & lt; mi&gt; i&lt; / mi&gt; & lt; mo&gt;, & lt; / mo&gt; & lt; mi&gt; j&lt; / mi&gt; & lt; mo&gt; \ unicode {x02A7D} & lt; / mo&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;,如果每个颜色类在H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016" wiley:location="equation/jgt23212-math-0016.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;​。在本文中,我们给出了平衡独立数α b (H)的下界。&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017 .png"&gt;&lt;mrow&gt;&lt; jgt23212- jgt23212-math-0017.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; mrow&gt;&lt; \unicode{x003B1}&lt;/ jgt23212- jgt23212-math-0017.png"&gt;&lt;mrow&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; (&lt;/mo&gt;&lt; H&lt;/mi&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;D =∣E∣/ n &ltxmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018 .png"&gt;&lt;mrow&gt;&lt; jgt23212- jgt23212-math-0018.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; D&lt;/ jgt23212- jgt23212-math-0018.png"&gt;&lt;mrow&gt;&lt; D&lt;/ mrow&gt;&lt;mrow&gt; D&lt;/ mrow&gt;&lt; mo&gt;=&lt;/mo&gt;&lt; /mo&gt;&lt;mo&gt;\unicode{x02223}&lt;/mo&gt;&lt; /mo&gt;&lt; /mo&gt;&lt; /mo&gt;&lt; /mo&gt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;;,以及平衡色数χ b (H)的上界&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019 .png"&gt;&lt;mrow&gt;&lt; jgt23212- jgt23212-math-0019.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt; mrow&gt;&lt; \unicode{x003C7}&lt;/ msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; /msub&gt;&lt; (&lt;/mo&gt;&lt; H&lt;/mi&gt;&lt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;根据最大程度Δ &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020" wiley:location="equation/jgt23212-math-0020.png"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi mathvariant="normal"&gt;\unicode{x00394}&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;。我们的结果恢复了Chakraborti最近对k = 2 &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021"的研究结果。威利:位置= "方程/ jgt23212 -数学- 0021. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; k&lt; / mi&gt; & lt; mo&gt; = & lt; / mo&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balanced Independent Sets and Colorings of Hypergraphs

A k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001" wiley:location="equation/jgt23212-math-0001.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> -uniform hypergraph H = ( V , E ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002" wiley:location="equation/jgt23212-math-0002.png"><mrow><mrow><mi>H</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow></mrow></mrow></math> is k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003" wiley:location="equation/jgt23212-math-0003.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> -partite if V <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004" wiley:location="equation/jgt23212-math-0004.png"><mrow><mrow><mi>V</mi></mrow></mrow></math> can be partitioned into k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005" wiley:location="equation/jgt23212-math-0005.png"><mrow><mrow><mi>k</mi></mrow></mrow></math> sets V 1 , , V k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006" wiley:location="equation/jgt23212-math-0006.png"><mrow><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>,</mo><mo>\unicode{x02026}</mo><mo>,</mo><msub><mi>V</mi><mi>k</mi></msub></mrow></mrow></math> such that every edge in E <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007" wiley:location="equation/jgt23212-math-0007.png"><mrow><mrow><mi>E</mi></mrow></mrow></math> contains precisely one vertex from each V i <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008" wiley:location="equation/jgt23212-math-0008.png"><mrow><mrow><msub><mi>V</mi><mi>i</mi></msub></mrow></mrow></math> . We call such a graph n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0009" wiley:location="equation/jgt23212-math-0009.png"><mrow><mrow><mi>n</mi></mrow></mrow></math> -balanced if V i = n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0010" wiley:location="equation/jgt23212-math-0010.png"><mrow><mrow><mo>\unicode{x02223}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\unicode{x02223}</mo><mo>=</mo><mi>n</mi></mrow></mrow></math> for each i <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0011" wiley:location="equation/jgt23212-math-0011.png"><mrow><mrow><mi>i</mi></mrow></mrow></math> . An independent set I <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0012" wiley:location="equation/jgt23212-math-0012.png"><mrow><mrow><mi>I</mi></mrow></mrow></math> in H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0013" wiley:location="equation/jgt23212-math-0013.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> is balanced if I V i = I V j <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0014" wiley:location="equation/jgt23212-math-0014.png"><mrow><mrow><mo>\unicode{x02223}</mo><mi>I</mi><mo>\unicode{x02229}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\unicode{x02223}</mo><mo>=</mo><mo>\unicode{x02223}</mo><mi>I</mi><mo>\unicode{x02229}</mo><msub><mi>V</mi><mi>j</mi></msub><mo>\unicode{x02223}</mo></mrow></mrow></math> for each 1 i , j k <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0015" wiley:location="equation/jgt23212-math-0015.png"><mrow><mrow><mn>1</mn><mo>\unicode{x02A7D}</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>\unicode{x02A7D}</mo><mi>k</mi></mrow></mrow></math> , and a coloring is balanced if each color class induces a balanced independent set in H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016" wiley:location="equation/jgt23212-math-0016.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . In this paper, we provide a lower bound on the balanced independence number α b ( H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017" wiley:location="equation/jgt23212-math-0017.png"><mrow><mrow><msub><mi>\unicode{x003B1}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math> in terms of the average degree D = E / n <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018" wiley:location="equation/jgt23212-math-0018.png"><mrow><mrow><mi>D</mi><mo>=</mo><mo>\unicode{x02223}</mo><mi>E</mi><mo>\unicode{x02223}</mo><mo>/</mo><mi>n</mi></mrow></mrow></math> , and an upper bound on the balanced chromatic number χ b ( H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019" wiley:location="equation/jgt23212-math-0019.png"><mrow><mrow><msub><mi>\unicode{x003C7}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math> in terms of the maximum degree Δ <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020" wiley:location="equation/jgt23212-math-0020.png"><mrow><mrow><mi mathvariant="normal">\unicode{x00394}</mi></mrow></mrow></math> . Our results recover those of recent work of Chakraborti for k = 2 <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021" wiley:location="equation/jgt23212-math-0021.png"><mrow><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></mrow></math> .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信