下载PDF
{"title":"超图的平衡独立集与着色","authors":"Abhishek Dhawan","doi":"10.1002/jgt.23212","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001\" wiley:location=\"equation/jgt23212-math-0001.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-uniform hypergraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002\" wiley:location=\"equation/jgt23212-math-0002.png\"><mrow><mrow><mi>H</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003\" wiley:location=\"equation/jgt23212-math-0003.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-partite if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004\" wiley:location=\"equation/jgt23212-math-0004.png\"><mrow><mrow><mi>V</mi></mrow></mrow></math></annotation>\n </semantics></math> can be partitioned into <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005\" wiley:location=\"equation/jgt23212-math-0005.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math> sets <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006\" wiley:location=\"equation/jgt23212-math-0006.png\"><mrow><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>V</mi><mi>k</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007\" wiley:location=\"equation/jgt23212-math-0007.png\"><mrow><mrow><mi>E</mi></mrow></mrow></math></annotation>\n </semantics></math> contains precisely one vertex from each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008\" wiley:location=\"equation/jgt23212-math-0008.png\"><mrow><mrow><msub><mi>V</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\n </semantics></math>. We call such a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0009\" wiley:location=\"equation/jgt23212-math-0009.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>-balanced if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0010\" wiley:location=\"equation/jgt23212-math-0010.png\"><mrow><mrow><mo>\\unicode{x02223}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\\unicode{x02223}</mo><mo>=</mo><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0011\" wiley:location=\"equation/jgt23212-math-0011.png\"><mrow><mrow><mi>i</mi></mrow></mrow></math></annotation>\n </semantics></math>. An independent set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>I</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0012\" wiley:location=\"equation/jgt23212-math-0012.png\"><mrow><mrow><mi>I</mi></mrow></mrow></math></annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0013\" wiley:location=\"equation/jgt23212-math-0013.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> is balanced if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>I</mi>\n \n <mo>∩</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>I</mi>\n \n <mo>∩</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0014\" wiley:location=\"equation/jgt23212-math-0014.png\"><mrow><mrow><mo>\\unicode{x02223}</mo><mi>I</mi><mo>\\unicode{x02229}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\\unicode{x02223}</mo><mo>=</mo><mo>\\unicode{x02223}</mo><mi>I</mi><mo>\\unicode{x02229}</mo><msub><mi>V</mi><mi>j</mi></msub><mo>\\unicode{x02223}</mo></mrow></mrow></math></annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>⩽</mo>\n \n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>⩽</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0015\" wiley:location=\"equation/jgt23212-math-0015.png\"><mrow><mrow><mn>1</mn><mo>\\unicode{x02A7D}</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>\\unicode{x02A7D}</mo><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>, and a coloring is balanced if each color class induces a balanced independent set in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016\" wiley:location=\"equation/jgt23212-math-0016.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>. In this paper, we provide a lower bound on the balanced independence number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>α</mi>\n \n <mi>b</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017\" wiley:location=\"equation/jgt23212-math-0017.png\"><mrow><mrow><msub><mi>\\unicode{x003B1}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> in terms of the average degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mo>∣</mo>\n \n <mo>/</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018\" wiley:location=\"equation/jgt23212-math-0018.png\"><mrow><mrow><mi>D</mi><mo>=</mo><mo>\\unicode{x02223}</mo><mi>E</mi><mo>\\unicode{x02223}</mo><mo>/</mo><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>, and an upper bound on the balanced chromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>b</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019\" wiley:location=\"equation/jgt23212-math-0019.png\"><mrow><mrow><msub><mi>\\unicode{x003C7}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020\" wiley:location=\"equation/jgt23212-math-0020.png\"><mrow><mrow><mi mathvariant=\"normal\">\\unicode{x00394}</mi></mrow></mrow></math></annotation>\n </semantics></math>. Our results recover those of recent work of Chakraborti for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021\" wiley:location=\"equation/jgt23212-math-0021.png\"><mrow><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"43-51"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23212","citationCount":"0","resultStr":"{\"title\":\"Balanced Independent Sets and Colorings of Hypergraphs\",\"authors\":\"Abhishek Dhawan\",\"doi\":\"10.1002/jgt.23212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001\\\" wiley:location=\\\"equation/jgt23212-math-0001.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math>-uniform hypergraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002\\\" wiley:location=\\\"equation/jgt23212-math-0002.png\\\"><mrow><mrow><mi>H</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003\\\" wiley:location=\\\"equation/jgt23212-math-0003.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math>-partite if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004\\\" wiley:location=\\\"equation/jgt23212-math-0004.png\\\"><mrow><mrow><mi>V</mi></mrow></mrow></math></annotation>\\n </semantics></math> can be partitioned into <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005\\\" wiley:location=\\\"equation/jgt23212-math-0005.png\\\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math> sets <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>V</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006\\\" wiley:location=\\\"equation/jgt23212-math-0006.png\\\"><mrow><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>,</mo><mo>\\\\unicode{x02026}</mo><mo>,</mo><msub><mi>V</mi><mi>k</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math> such that every edge in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007\\\" wiley:location=\\\"equation/jgt23212-math-0007.png\\\"><mrow><mrow><mi>E</mi></mrow></mrow></math></annotation>\\n </semantics></math> contains precisely one vertex from each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>V</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008\\\" wiley:location=\\\"equation/jgt23212-math-0008.png\\\"><mrow><mrow><msub><mi>V</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\\n </semantics></math>. We call such a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0009\\\" wiley:location=\\\"equation/jgt23212-math-0009.png\\\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math>-balanced if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0010\\\" wiley:location=\\\"equation/jgt23212-math-0010.png\\\"><mrow><mrow><mo>\\\\unicode{x02223}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\\\\unicode{x02223}</mo><mo>=</mo><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0011\\\" wiley:location=\\\"equation/jgt23212-math-0011.png\\\"><mrow><mrow><mi>i</mi></mrow></mrow></math></annotation>\\n </semantics></math>. An independent set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0012\\\" wiley:location=\\\"equation/jgt23212-math-0012.png\\\"><mrow><mrow><mi>I</mi></mrow></mrow></math></annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0013\\\" wiley:location=\\\"equation/jgt23212-math-0013.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math> is balanced if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>I</mi>\\n \\n <mo>∩</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>I</mi>\\n \\n <mo>∩</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>j</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0014\\\" wiley:location=\\\"equation/jgt23212-math-0014.png\\\"><mrow><mrow><mo>\\\\unicode{x02223}</mo><mi>I</mi><mo>\\\\unicode{x02229}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\\\\unicode{x02223}</mo><mo>=</mo><mo>\\\\unicode{x02223}</mo><mi>I</mi><mo>\\\\unicode{x02229}</mo><msub><mi>V</mi><mi>j</mi></msub><mo>\\\\unicode{x02223}</mo></mrow></mrow></math></annotation>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>⩽</mo>\\n \\n <mi>i</mi>\\n \\n <mo>,</mo>\\n \\n <mi>j</mi>\\n \\n <mo>⩽</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0015\\\" wiley:location=\\\"equation/jgt23212-math-0015.png\\\"><mrow><mrow><mn>1</mn><mo>\\\\unicode{x02A7D}</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>\\\\unicode{x02A7D}</mo><mi>k</mi></mrow></mrow></math></annotation>\\n </semantics></math>, and a coloring is balanced if each color class induces a balanced independent set in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016\\\" wiley:location=\\\"equation/jgt23212-math-0016.png\\\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\\n </semantics></math>. In this paper, we provide a lower bound on the balanced independence number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>α</mi>\\n \\n <mi>b</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017\\\" wiley:location=\\\"equation/jgt23212-math-0017.png\\\"><mrow><mrow><msub><mi>\\\\unicode{x003B1}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> in terms of the average degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n \\n <mo>=</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>E</mi>\\n \\n <mo>∣</mo>\\n \\n <mo>/</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018\\\" wiley:location=\\\"equation/jgt23212-math-0018.png\\\"><mrow><mrow><mi>D</mi><mo>=</mo><mo>\\\\unicode{x02223}</mo><mi>E</mi><mo>\\\\unicode{x02223}</mo><mo>/</mo><mi>n</mi></mrow></mrow></math></annotation>\\n </semantics></math>, and an upper bound on the balanced chromatic number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>b</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019\\\" wiley:location=\\\"equation/jgt23212-math-0019.png\\\"><mrow><mrow><msub><mi>\\\\unicode{x003C7}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\\n </semantics></math> in terms of the maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020\\\" wiley:location=\\\"equation/jgt23212-math-0020.png\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">\\\\unicode{x00394}</mi></mrow></mrow></math></annotation>\\n </semantics></math>. Our results recover those of recent work of Chakraborti for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n <annotation> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021\\\" wiley:location=\\\"equation/jgt23212-math-0021.png\\\"><mrow><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></mrow></math></annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"43-51\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23212\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23212\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用