{"title":"Balanced Independent Sets and Colorings of Hypergraphs","authors":"Abhishek Dhawan","doi":"10.1002/jgt.23212","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0001\" wiley:location=\"equation/jgt23212-math-0001.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-uniform hypergraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0002\" wiley:location=\"equation/jgt23212-math-0002.png\"><mrow><mrow><mi>H</mi><mo>=</mo><mrow><mo>(</mo><mrow><mi>V</mi><mo>,</mo><mi>E</mi></mrow><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0003\" wiley:location=\"equation/jgt23212-math-0003.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>-partite if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0004\" wiley:location=\"equation/jgt23212-math-0004.png\"><mrow><mrow><mi>V</mi></mrow></mrow></math></annotation>\n </semantics></math> can be partitioned into <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0005\" wiley:location=\"equation/jgt23212-math-0005.png\"><mrow><mrow><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math> sets <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0006\" wiley:location=\"equation/jgt23212-math-0006.png\"><mrow><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>,</mo><mo>\\unicode{x02026}</mo><mo>,</mo><msub><mi>V</mi><mi>k</mi></msub></mrow></mrow></math></annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0007\" wiley:location=\"equation/jgt23212-math-0007.png\"><mrow><mrow><mi>E</mi></mrow></mrow></math></annotation>\n </semantics></math> contains precisely one vertex from each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0008\" wiley:location=\"equation/jgt23212-math-0008.png\"><mrow><mrow><msub><mi>V</mi><mi>i</mi></msub></mrow></mrow></math></annotation>\n </semantics></math>. We call such a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0009\" wiley:location=\"equation/jgt23212-math-0009.png\"><mrow><mrow><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>-balanced if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0010\" wiley:location=\"equation/jgt23212-math-0010.png\"><mrow><mrow><mo>\\unicode{x02223}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\\unicode{x02223}</mo><mo>=</mo><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0011\" wiley:location=\"equation/jgt23212-math-0011.png\"><mrow><mrow><mi>i</mi></mrow></mrow></math></annotation>\n </semantics></math>. An independent set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>I</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0012\" wiley:location=\"equation/jgt23212-math-0012.png\"><mrow><mrow><mi>I</mi></mrow></mrow></math></annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0013\" wiley:location=\"equation/jgt23212-math-0013.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math> is balanced if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>I</mi>\n \n <mo>∩</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>I</mi>\n \n <mo>∩</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0014\" wiley:location=\"equation/jgt23212-math-0014.png\"><mrow><mrow><mo>\\unicode{x02223}</mo><mi>I</mi><mo>\\unicode{x02229}</mo><msub><mi>V</mi><mi>i</mi></msub><mo>\\unicode{x02223}</mo><mo>=</mo><mo>\\unicode{x02223}</mo><mi>I</mi><mo>\\unicode{x02229}</mo><msub><mi>V</mi><mi>j</mi></msub><mo>\\unicode{x02223}</mo></mrow></mrow></math></annotation>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>⩽</mo>\n \n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>⩽</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0015\" wiley:location=\"equation/jgt23212-math-0015.png\"><mrow><mrow><mn>1</mn><mo>\\unicode{x02A7D}</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>\\unicode{x02A7D}</mo><mi>k</mi></mrow></mrow></math></annotation>\n </semantics></math>, and a coloring is balanced if each color class induces a balanced independent set in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0016\" wiley:location=\"equation/jgt23212-math-0016.png\"><mrow><mrow><mi>H</mi></mrow></mrow></math></annotation>\n </semantics></math>. In this paper, we provide a lower bound on the balanced independence number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>α</mi>\n \n <mi>b</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0017\" wiley:location=\"equation/jgt23212-math-0017.png\"><mrow><mrow><msub><mi>\\unicode{x003B1}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> in terms of the average degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mo>=</mo>\n \n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mo>∣</mo>\n \n <mo>/</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0018\" wiley:location=\"equation/jgt23212-math-0018.png\"><mrow><mrow><mi>D</mi><mo>=</mo><mo>\\unicode{x02223}</mo><mi>E</mi><mo>\\unicode{x02223}</mo><mo>/</mo><mi>n</mi></mrow></mrow></math></annotation>\n </semantics></math>, and an upper bound on the balanced chromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>b</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0019\" wiley:location=\"equation/jgt23212-math-0019.png\"><mrow><mrow><msub><mi>\\unicode{x003C7}</mi><mi>b</mi></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math></annotation>\n </semantics></math> in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0020\" wiley:location=\"equation/jgt23212-math-0020.png\"><mrow><mrow><mi mathvariant=\"normal\">\\unicode{x00394}</mi></mrow></mrow></math></annotation>\n </semantics></math>. Our results recover those of recent work of Chakraborti for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23212:jgt23212-math-0021\" wiley:location=\"equation/jgt23212-math-0021.png\"><mrow><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></mrow></math></annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"43-51"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A -uniform hypergraph is -partite if can be partitioned into sets such that every edge in contains precisely one vertex from each . We call such a graph -balanced if for each . An independent set in is balanced if for each , and a coloring is balanced if each color class induces a balanced independent set in . In this paper, we provide a lower bound on the balanced independence number in terms of the average degree , and an upper bound on the balanced chromatic number in terms of the maximum degree . Our results recover those of recent work of Chakraborti for .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .