完全二部图中的填充着色及对应填充的反问题

IF 0.9 3区 数学 Q2 MATHEMATICS
Stijn Cambie, Rimma Hämäläinen
{"title":"完全二部图中的填充着色及对应填充的反问题","authors":"Stijn Cambie,&nbsp;Rimma Hämäläinen","doi":"10.1002/jgt.23215","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Applications of graph colouring often involve taking restrictions into account, and it is desirable to have multiple (disjoint) solutions. In the optimal case, where there is a partition into disjoint colourings, we speak of a packing. However, even for complete bipartite graphs, the list chromatic number can be arbitrarily large, and its exact determination is generally difficult. For the packing variant, this question becomes even harder. In this paper, we study the correspondence- and list-packing numbers of (asymmetric) complete bipartite graphs. In the most asymmetric cases, Latin squares come into play. Our results show that every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n \n <mo>∈</mo>\n \n <msup>\n <mi>Z</mi>\n \n <mo>+</mo>\n </msup>\n \n <mo>\\</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mn>3</mn>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23215:jgt23215-math-0001\" wiley:location=\"equation/jgt23215-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;\\unicode{x02208}&lt;/mo&gt;&lt;msup&gt;&lt;mi mathvariant=\"double-struck\"&gt;Z&lt;/mi&gt;&lt;mo&gt;\\unicode{x0002B}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;\\unicode{x0005C}&lt;/mo&gt;&lt;mrow&gt;&lt;mo class=\"MathClass-open\"&gt;{&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo class=\"MathClass-close\"&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> can be equal to the correspondence packing number of a graph. We disprove a recent conjecture that relates the list packing number and the list flexibility number. Additionally, we improve the threshold functions for the correspondence packing variant.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"52-61"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing Colourings in Complete Bipartite Graphs and the Inverse Problem for Correspondence Packing\",\"authors\":\"Stijn Cambie,&nbsp;Rimma Hämäläinen\",\"doi\":\"10.1002/jgt.23215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Applications of graph colouring often involve taking restrictions into account, and it is desirable to have multiple (disjoint) solutions. In the optimal case, where there is a partition into disjoint colourings, we speak of a packing. However, even for complete bipartite graphs, the list chromatic number can be arbitrarily large, and its exact determination is generally difficult. For the packing variant, this question becomes even harder. In this paper, we study the correspondence- and list-packing numbers of (asymmetric) complete bipartite graphs. In the most asymmetric cases, Latin squares come into play. Our results show that every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>z</mi>\\n \\n <mo>∈</mo>\\n \\n <msup>\\n <mi>Z</mi>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mo>\\\\</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mn>3</mn>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23215:jgt23215-math-0001\\\" wiley:location=\\\"equation/jgt23215-math-0001.png\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02208}&lt;/mo&gt;&lt;msup&gt;&lt;mi mathvariant=\\\"double-struck\\\"&gt;Z&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x0002B}&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;\\\\unicode{x0005C}&lt;/mo&gt;&lt;mrow&gt;&lt;mo class=\\\"MathClass-open\\\"&gt;{&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo class=\\\"MathClass-close\\\"&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> can be equal to the correspondence packing number of a graph. We disprove a recent conjecture that relates the list packing number and the list flexibility number. Additionally, we improve the threshold functions for the correspondence packing variant.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 1\",\"pages\":\"52-61\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23215\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图形着色的应用通常涉及到考虑限制,并且希望有多个(不相交的)解。在最优的情况下,有一个分割成不相交的颜色,我们说一个包装。然而,即使对于完全二部图,表色数也可以是任意大的,并且它的精确确定通常是困难的。对于包装变体,这个问题变得更加困难。本文研究了(非对称)完全二部图的对应装箱数和列装箱数。在大多数不对称的情况下,拉丁方格起作用。我们的结果表明,每个z∈z + \ {3}< math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23215:jgt23215-math-0001" wiley:location="equation/jgt23215-math-0001.png“><mrow><mrow>< mrow>< /jgt23215- jgt23215- jgt23215-math-0001.png“><mrow>< / mrow>< / mrow>< mo>\unicode{x0002B}</ msup>< /msup>< mi mathvariant=”双打”> z</ msup>< /msup>< /msup>< /msup>< /msup><类= " MathClass-open "祝辞{& lt; / mo> & lt; mn> 3 & lt; / mn> & lt;莫类=“MathClass-close”祝辞}& lt; / mo> & lt; / mrow> & lt; / mrow> & lt; / mrow> & lt; / math>可以等于图的对应装箱数。我们反驳了最近关于清单装箱数与清单柔性数之间关系的一个猜想。此外,我们改进了对应包装变量的阈值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Packing Colourings in Complete Bipartite Graphs and the Inverse Problem for Correspondence Packing

Applications of graph colouring often involve taking restrictions into account, and it is desirable to have multiple (disjoint) solutions. In the optimal case, where there is a partition into disjoint colourings, we speak of a packing. However, even for complete bipartite graphs, the list chromatic number can be arbitrarily large, and its exact determination is generally difficult. For the packing variant, this question becomes even harder. In this paper, we study the correspondence- and list-packing numbers of (asymmetric) complete bipartite graphs. In the most asymmetric cases, Latin squares come into play. Our results show that every z Z + \ { 3 } <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23215:jgt23215-math-0001" wiley:location="equation/jgt23215-math-0001.png"><mrow><mrow><mi>z</mi><mo>\unicode{x02208}</mo><msup><mi mathvariant="double-struck">Z</mi><mo>\unicode{x0002B}</mo></msup><mo>\unicode{x0005C}</mo><mrow><mo class="MathClass-open">{</mo><mn>3</mn><mo class="MathClass-close">}</mo></mrow></mrow></mrow></math> can be equal to the correspondence packing number of a graph. We disprove a recent conjecture that relates the list packing number and the list flexibility number. Additionally, we improve the threshold functions for the correspondence packing variant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信