短彩虹周期的家庭匹配和三角形

IF 0.9 3区 数学 Q2 MATHEMATICS
He Guo
{"title":"短彩虹周期的家庭匹配和三角形","authors":"He Guo","doi":"10.1002/jgt.23183","DOIUrl":null,"url":null,"abstract":"<p>A generalization of the famous Caccetta–Häggkvist conjecture, suggested by Aharoni, is that any family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}=({F}_{1},\\ldots ,{F}_{n})$</annotation>\n </semantics></math> of sets of edges in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{n}$</annotation>\n </semantics></math>, each of size <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>, has a rainbow cycle of length at most <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\frac{n}{k}\\rceil $</annotation>\n </semantics></math>. In works by the author with Aharoni and by the author with Aharoni, Berger, Chudnovsky, and Zerbib, it was shown that asymptotically this can be improved to <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O(\\mathrm{log}n)$</annotation>\n </semantics></math> if all sets are matchings of size 2, or all are triangles. We show that the same is true in the mixed case, that is, if each <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{i}$</annotation>\n </semantics></math> is either a matching of size 2 or a triangle. We also study the case that each <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{i}$</annotation>\n </semantics></math> is a matching of size 2 or a single edge, or each <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{i}$</annotation>\n </semantics></math> is a triangle or a single edge, and in each of these cases we determine the threshold proportion between the types, beyond which the rainbow girth goes from linear to logarithmic.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"325-336"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23183","citationCount":"0","resultStr":"{\"title\":\"Short rainbow cycles for families of matchings and triangles\",\"authors\":\"He Guo\",\"doi\":\"10.1002/jgt.23183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalization of the famous Caccetta–Häggkvist conjecture, suggested by Aharoni, is that any family <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n \\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>F</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}=({F}_{1},\\\\ldots ,{F}_{n})$</annotation>\\n </semantics></math> of sets of edges in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{n}$</annotation>\\n </semantics></math>, each of size <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>, has a rainbow cycle of length at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⌈</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>k</mi>\\n </mfrac>\\n \\n <mo>⌉</mo>\\n </mrow>\\n <annotation> $\\\\lceil \\\\frac{n}{k}\\\\rceil $</annotation>\\n </semantics></math>. In works by the author with Aharoni and by the author with Aharoni, Berger, Chudnovsky, and Zerbib, it was shown that asymptotically this can be improved to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O(\\\\mathrm{log}n)$</annotation>\\n </semantics></math> if all sets are matchings of size 2, or all are triangles. We show that the same is true in the mixed case, that is, if each <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${F}_{i}$</annotation>\\n </semantics></math> is either a matching of size 2 or a triangle. We also study the case that each <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${F}_{i}$</annotation>\\n </semantics></math> is a matching of size 2 or a single edge, or each <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${F}_{i}$</annotation>\\n </semantics></math> is a triangle or a single edge, and in each of these cases we determine the threshold proportion between the types, beyond which the rainbow girth goes from linear to logarithmic.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"325-336\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23183\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23183\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23183","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

由阿哈罗尼提出的著名的卡塞塔-哈格克维斯特猜想的一个概括是:任何族 F = ( F 1 , ... , F n ) ${rm{ {mathcal F} }}=({F}_{1},\ldots ,{F}_{n})$ K n ${K}_{n} 中的边集,每个边集的大小为 k $k}}=({F}_{1},\ldots ,{F}_{n})$ K n ${K}_{n}$ 中的边集,每个边集的大小为 k $k$,最多有⌈ n k ⌉ $\lceil \frac{n}{k}\rceil $ 长度的彩虹循环。作者与 Aharoni 以及作者与 Aharoni、Berger、Chudnovsky 和 Zerbib 的研究表明,如果所有集合都是大小为 2 的匹配集,或者所有集合都是三角形,那么从渐近的角度来看,这个结果可以改进为 O ( log n ) $O(\mathrm{log}n)$。我们将证明,在混合情况下,即每个 F i ${F}_{i}$ 要么是大小为 2 的匹配集要么是三角形时,情况也是如此。我们还研究了每个 F i ${F}_{i}$ 都是大小为 2 的匹配或单边,或者每个 F i ${F}_{i}$ 都是三角形或单边的情况,在每种情况下,我们都确定了类型之间的临界比例,超过这个比例,彩虹周长就会从线性变为对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short rainbow cycles for families of matchings and triangles

A generalization of the famous Caccetta–Häggkvist conjecture, suggested by Aharoni, is that any family F = ( F 1 , , F n ) ${\rm{ {\mathcal F} }}=({F}_{1},\ldots ,{F}_{n})$ of sets of edges in K n ${K}_{n}$ , each of size k $k$ , has a rainbow cycle of length at most n k $\lceil \frac{n}{k}\rceil $ . In works by the author with Aharoni and by the author with Aharoni, Berger, Chudnovsky, and Zerbib, it was shown that asymptotically this can be improved to O ( log n ) $O(\mathrm{log}n)$ if all sets are matchings of size 2, or all are triangles. We show that the same is true in the mixed case, that is, if each F i ${F}_{i}$ is either a matching of size 2 or a triangle. We also study the case that each F i ${F}_{i}$ is a matching of size 2 or a single edge, or each F i ${F}_{i}$ is a triangle or a single edge, and in each of these cases we determine the threshold proportion between the types, beyond which the rainbow girth goes from linear to logarithmic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信