求助PDF
{"title":"周长为2 +1$ 2\\ell +1$且没有较长的奇孔的图是三色的","authors":"Rong Chen","doi":"10.1002/jgt.23195","DOIUrl":null,"url":null,"abstract":"<p>For a number <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $\\ell \\ge 2$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{G}}}_{\\ell }$</annotation>\n </semantics></math> denote the family of graphs which have girth <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $2\\ell +1$</annotation>\n </semantics></math> and have no odd hole with length greater than <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $2\\ell +1$</annotation>\n </semantics></math>. Wu et al. conjectured that every graph in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>⋃</mo>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <msub>\n <mi>G</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <annotation> ${\\bigcup }_{\\ell \\ge 2}{{\\mathscr{G}}}_{\\ell }$</annotation>\n </semantics></math> is 3-colorable. Chudnovsky et al. and Wu et al., respectively, proved that every graph in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{G}}}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{G}}}_{3}$</annotation>\n </semantics></math> is 3-colorable. In this paper, we prove that every graph in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>⋃</mo>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mn>5</mn>\n </mrow>\n </msub>\n <msub>\n <mi>G</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <annotation> ${\\bigcup }_{\\ell \\ge 5}{{\\mathscr{G}}}_{\\ell }$</annotation>\n </semantics></math> is 3-colorable.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"661-671"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with girth \\n \\n \\n 2\\n ℓ\\n +\\n 1\\n \\n $2\\\\ell +1$\\n and without longer odd holes are 3-colorable\",\"authors\":\"Rong Chen\",\"doi\":\"10.1002/jgt.23195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $\\\\ell \\\\ge 2$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{G}}}_{\\\\ell }$</annotation>\\n </semantics></math> denote the family of graphs which have girth <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $2\\\\ell +1$</annotation>\\n </semantics></math> and have no odd hole with length greater than <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $2\\\\ell +1$</annotation>\\n </semantics></math>. Wu et al. conjectured that every graph in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>G</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\bigcup }_{\\\\ell \\\\ge 2}{{\\\\mathscr{G}}}_{\\\\ell }$</annotation>\\n </semantics></math> is 3-colorable. Chudnovsky et al. and Wu et al., respectively, proved that every graph in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{G}}}_{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{G}}}_{3}$</annotation>\\n </semantics></math> is 3-colorable. In this paper, we prove that every graph in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≥</mo>\\n <mn>5</mn>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>G</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\bigcup }_{\\\\ell \\\\ge 5}{{\\\\mathscr{G}}}_{\\\\ell }$</annotation>\\n </semantics></math> is 3-colorable.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 4\",\"pages\":\"661-671\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23195\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23195","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用