图类的奇色数

IF 0.9 3区 数学 Q2 MATHEMATICS
Rémy Belmonte, Ararat Harutyunyan, Noleen Köhler, Nikolaos Melissinos
{"title":"图类的奇色数","authors":"Rémy Belmonte,&nbsp;Ararat Harutyunyan,&nbsp;Noleen Köhler,&nbsp;Nikolaos Melissinos","doi":"10.1002/jgt.23200","DOIUrl":null,"url":null,"abstract":"<p>A graph is called <i>odd</i> (respectively, <i>even</i>) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an <i>odd colouring</i> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-odd colourable if it can be partitioned into at most <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> odd induced subgraphs. The <i>odd chromatic number of</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mtext>odd</mtext>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\chi }_{\\text{odd}}(G)$</annotation>\n </semantics></math>, is the minimum integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> for which <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We first consider a question due to Scott, which states that every graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of even order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mtext>odd</mtext>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>c</mi>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n <annotation> ${\\chi }_{\\text{odd}}(G)\\le c\\sqrt{n}$</annotation>\n </semantics></math>, for some positive constant <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math>, by proving that this is indeed the case if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is restricted to having girth at least seven. We also show that any graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> whose all components have even order satisfies <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mtext>odd</mtext>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${\\chi }_{\\text{odd}}(G)\\le 2{\\rm{\\Delta }}-1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math> is the maximum degree of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Next, we show that certain interesting classes have bounded odd chromatic number. Our main results in this direction are that interval graphs, graphs of bounded modular-width all have bounded odd chromatic number. In particular, every even interval graph is 6-odd colourable, and every even graph is <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n \n <mi>m</mi>\n \n <mi>w</mi>\n </mrow>\n <annotation> $3mw$</annotation>\n </semantics></math>-odd colourable, where <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mi>w</mi>\n </mrow>\n <annotation> $mw$</annotation>\n </semantics></math> is the modular width of a graph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"722-744"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23200","citationCount":"0","resultStr":"{\"title\":\"Odd chromatic number of graph classes\",\"authors\":\"Rémy Belmonte,&nbsp;Ararat Harutyunyan,&nbsp;Noleen Köhler,&nbsp;Nikolaos Melissinos\",\"doi\":\"10.1002/jgt.23200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A graph is called <i>odd</i> (respectively, <i>even</i>) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an <i>odd colouring</i> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-odd colourable if it can be partitioned into at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> odd induced subgraphs. The <i>odd chromatic number of</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mtext>odd</mtext>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\chi }_{\\\\text{odd}}(G)$</annotation>\\n </semantics></math>, is the minimum integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> for which <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We first consider a question due to Scott, which states that every graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of even order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> has <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mtext>odd</mtext>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>c</mi>\\n \\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mrow>\\n <annotation> ${\\\\chi }_{\\\\text{odd}}(G)\\\\le c\\\\sqrt{n}$</annotation>\\n </semantics></math>, for some positive constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation> $c$</annotation>\\n </semantics></math>, by proving that this is indeed the case if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is restricted to having girth at least seven. We also show that any graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> whose all components have even order satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mtext>odd</mtext>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> ${\\\\chi }_{\\\\text{odd}}(G)\\\\le 2{\\\\rm{\\\\Delta }}-1$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> is the maximum degree of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Next, we show that certain interesting classes have bounded odd chromatic number. Our main results in this direction are that interval graphs, graphs of bounded modular-width all have bounded odd chromatic number. In particular, every even interval graph is 6-odd colourable, and every even graph is <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n \\n <mi>m</mi>\\n \\n <mi>w</mi>\\n </mrow>\\n <annotation> $3mw$</annotation>\\n </semantics></math>-odd colourable, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n \\n <mi>w</mi>\\n </mrow>\\n <annotation> $mw$</annotation>\\n </semantics></math> is the modular width of a graph.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 4\",\"pages\":\"722-744\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23200\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23200\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23200","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果每个顶点都有奇数次(分别为偶数次)度,则称图为奇次(分别为偶数次)。Gallai证明了每个图都可以划分为两个偶诱导子图,或者划分为一个奇和一个偶诱导子图。我们把划分成奇数子图称为G的奇着色 $G$ . 斯科特证明了连通图当且仅当其顶点数为偶数时允许奇数着色。我们说一个图G $G$ k是多少? $k$ -奇数是可着色的,如果它能被划分成最多k $k$ 奇诱导子图。G的奇色数 $G$ ,用χ奇数(G)表示 ${\chi }_{\text{odd}}(G)$ ,是最小整数k $k$ 为什么? $G$ k是多少? $k$ -奇数可着色。对图类的奇着色和奇色数进行了系统的研究。我们首先考虑Scott提出的问题,即每个图G $G$ 偶n阶的 $n$ χ奇数(G)≤ck ${\chi }_{\text{odd}}(G)\le c\sqrt{n}$ 对于某个正常数c $c$ ,通过证明G确实如此 $G$ 腰围限制在七岁以上。我们也证明了任意图G $G$ 其所有分量的偶数阶满足χ odd (G)≤2 Δ−1 ${\chi }_{\text{odd}}(G)\le 2{\rm{\Delta }}-1$ ,其中Δ ${\rm{\Delta }}$ G的最大度是多少 $G$ . 其次,我们证明了某些有趣的类具有有界的奇色数。我们在这个方向上的主要结果是区间图、有界模宽度图都有界奇色数。特别地,每一个偶区间图都是6奇可着色的,每一个偶区间图都是3mw $3mw$ -奇数色,其中m w $mw$ 是图的模宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Odd chromatic number of graph classes

Odd chromatic number of graph classes

A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G $G$ . Scott proved that a connected graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph G $G$ is k $k$ -odd colourable if it can be partitioned into at most k $k$ odd induced subgraphs. The odd chromatic number of G $G$ , denoted by χ odd ( G ) ${\chi }_{\text{odd}}(G)$ , is the minimum integer k $k$ for which G $G$ is k $k$ -odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. We first consider a question due to Scott, which states that every graph G $G$ of even order n $n$ has χ odd ( G ) c n ${\chi }_{\text{odd}}(G)\le c\sqrt{n}$ , for some positive constant c $c$ , by proving that this is indeed the case if G $G$ is restricted to having girth at least seven. We also show that any graph G $G$ whose all components have even order satisfies χ odd ( G ) 2 Δ 1 ${\chi }_{\text{odd}}(G)\le 2{\rm{\Delta }}-1$ , where Δ ${\rm{\Delta }}$ is the maximum degree of G $G$ . Next, we show that certain interesting classes have bounded odd chromatic number. Our main results in this direction are that interval graphs, graphs of bounded modular-width all have bounded odd chromatic number. In particular, every even interval graph is 6-odd colourable, and every even graph is 3 m w $3mw$ -odd colourable, where m w $mw$ is the modular width of a graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信