Improved bounds on the cop number when forbidding a minor

IF 0.9 3区 数学 Q2 MATHEMATICS
Franklin Kenter, Erin Meger, Jérémie Turcotte
{"title":"Improved bounds on the cop number when forbidding a minor","authors":"Franklin Kenter,&nbsp;Erin Meger,&nbsp;Jérémie Turcotte","doi":"10.1002/jgt.23194","DOIUrl":null,"url":null,"abstract":"<p>Andreae proved that the cop number of connected <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001\" wiley:location=\"equation/jgt23194-math-0001.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-minor-free graphs is bounded for every graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002\" wiley:location=\"equation/jgt23194-math-0002.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. In particular, the cop number is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>H</mi>\n \n <mo>−</mo>\n \n <mi>h</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003\" wiley:location=\"equation/jgt23194-math-0003.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;\\unicode{x02223}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>−</mo>\n \n <mi>h</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004\" wiley:location=\"equation/jgt23194-math-0004.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> contains no isolated vertex, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>h</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0005\" wiley:location=\"equation/jgt23194-math-0005.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;\\unicode{x02208}&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. The main result of this paper is an improvement on this bound, which is most significant when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0006\" wiley:location=\"equation/jgt23194-math-0006.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> is small or sparse, for instance, when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>−</mo>\n \n <mi>h</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0007\" wiley:location=\"equation/jgt23194-math-0007.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;\\unicode{x02212}&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> can be obtained from another graph by multiple edge subdivisions. Some consequences of this result are improvements on the upper bound for the cop number of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0008\" wiley:location=\"equation/jgt23194-math-0008.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-minor-free graphs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" altimg=\"urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0009\" wiley:location=\"equation/jgt23194-math-0009.png\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>-minor-free graphs and linklessly embeddable graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 3","pages":"620-646"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23194","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Andreae proved that the cop number of connected H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001" wiley:location="equation/jgt23194-math-0001.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> -minor-free graphs is bounded for every graph H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002" wiley:location="equation/jgt23194-math-0002.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> . In particular, the cop number is at most E ( H h ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003" wiley:location="equation/jgt23194-math-0003.png"><mrow><mrow><mo>\unicode{x02223}</mo><mi>E</mi><mrow><mo>(</mo><mrow><mi>H</mi><mo>\unicode{x02212}</mo><mi>h</mi></mrow><mo>)</mo></mrow><mo>\unicode{x02223}</mo></mrow></mrow></math> if H h <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004" wiley:location="equation/jgt23194-math-0004.png"><mrow><mrow><mi>H</mi><mo>\unicode{x02212}</mo><mi>h</mi></mrow></mrow></math> contains no isolated vertex, where h V ( H ) <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0005" wiley:location="equation/jgt23194-math-0005.png"><mrow><mrow><mi>h</mi><mo>\unicode{x02208}</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mrow></math> . The main result of this paper is an improvement on this bound, which is most significant when H <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0006" wiley:location="equation/jgt23194-math-0006.png"><mrow><mrow><mi>H</mi></mrow></mrow></math> is small or sparse, for instance, when H h <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0007" wiley:location="equation/jgt23194-math-0007.png"><mrow><mrow><mi>H</mi><mo>\unicode{x02212}</mo><mi>h</mi></mrow></mrow></math> can be obtained from another graph by multiple edge subdivisions. Some consequences of this result are improvements on the upper bound for the cop number of K 3 , t <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0008" wiley:location="equation/jgt23194-math-0008.png"><mrow><mrow><msub><mi>K</mi><mrow><mn>3</mn><mo>,</mo><mi>t</mi></mrow></msub></mrow></mrow></math> -minor-free graphs, K 2 , t <math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0009" wiley:location="equation/jgt23194-math-0009.png"><mrow><mrow><msub><mi>K</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub></mrow></mrow></math> -minor-free graphs and linklessly embeddable graphs.

改进了禁止未成年人使用警察号码的限制
Andreae证明了连接的H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0001" wiley:location="equation/jgt23194-math-0001.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;-对每个图H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0002" wiley:location="equation/jgt23194-math-0002.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/math&gt;. 特别是,cop数至多为∣E (H−H)∣&lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0003”威利:位置= "方程/ jgt23194 -数学- 0003. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mo&gt; \ unicode {x02223} & lt; / mo&gt; & lt; mi&gt; E&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; mo&gt; \ unicode {x02223} & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;if H−H &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0004”威利:位置= "方程/ jgt23194 -数学- 0004. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;不包含孤立顶点,其中h∈V (h) &lt;math xmlns=“http://www.w3.org/1998/Math/MathML”altimg = " urn: x-wiley: 03649024:媒体:jgt23194: jgt23194 -数学- 0005“威利:位置=“方程/ jgt23194 -数学- 0005. - png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; h&lt; / mi&gt; & lt; mo&gt; \ unicode {x02208} & lt; / mo&gt; & lt; mi&gt; V&lt; / mi&gt; & lt; mrow&gt; & lt; mo&gt; (& lt; / mo&gt; & lt; mi&gt h&lt; / mi&gt; & lt; mo&gt;) & lt; / mo&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;. 本文的主要结果是对这一边界的改进,当H&lt; math xmlns="http://www.w3.org/1998/Math/MathML" altimg="urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0006" wiley:location="equation/jgt23194-math-0006.png"&gt;&lt;mrow&gt;&lt; /mrow&gt;&lt;/mrow&gt;&lt;/ mrow&gt;&lt;/mrow&gt;&lt;/math&gt;是小的或稀疏的,当H−H &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0007”威利:位置= "方程/ jgt23194 -数学- 0007. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; mo&gt; \ unicode {x02212} & lt; / mo&gt; & lt; mi&gt; H&lt; / mi&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;可以从另一个图中通过多个边细分得到。 该结果的一些结果是对k3的cop数上界的改进,t &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0008”威利:位置= "方程/ jgt23194 -数学- 0008. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; K&lt; / mi&gt; & lt; mrow&gt; & lt; mn&gt; 3 & lt; / mn&gt; & lt; mo&gt; & lt; / mo&gt; & lt; mi&gt; t&lt; / mi&gt; & lt; / mrow&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;-无次元图,k2,t &lt;math xmlns="http://www.w3.org/1998/Math/MathML" altimg=“urn:x-wiley:03649024:media:jgt23194:jgt23194-math-0009”威利:位置= "方程/ jgt23194 -数学- 0009. png”祝辞& lt; mrow&gt; & lt; mrow&gt; & lt; msub&gt; & lt; mi&gt; K&lt; / mi&gt; & lt; mrow&gt; & lt; mn&gt; 2 & lt; / mn&gt; & lt; mo&gt; & lt; / mo&gt; & lt; mi&gt; t&lt; / mi&gt; & lt; / mrow&gt; & lt; / msub&gt; & lt; / mrow&gt; & lt; / mrow&gt; & lt; / math&gt;无次要图和无链接嵌入图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信