Edge-arc-disjoint paths in semicomplete mixed graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
J. Bang-Jensen, Y. Wang
{"title":"Edge-arc-disjoint paths in semicomplete mixed graphs","authors":"J. Bang-Jensen,&nbsp;Y. Wang","doi":"10.1002/jgt.23199","DOIUrl":null,"url":null,"abstract":"<p>The so-called <i>weak-2-linkage problem</i> asks for a given digraph <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>V</mi>\n <mo>,</mo>\n <mi>A</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $D=(V,A)$</annotation>\n </semantics></math> and distinct vertices <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>s</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>t</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>t</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> whether <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> has arc-disjoint paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>P</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${P}_{1},{P}_{2}$</annotation>\n </semantics></math> so that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${P}_{i}$</annotation>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>s</mi>\n <mi>i</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>t</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({s}_{i},{t}_{i})$</annotation>\n </semantics></math>-path for <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $i=1,2$</annotation>\n </semantics></math>. This problem is NP-complete for general digraphs but the first author showed that the problem is polynomially solvable and that all exceptions can be characterized when <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is a semicomplete digraph, that is, a digraph with no pair of nonadjacent vertices. In this paper we extend these results to paths which are both edge-disjoint and arc-disjoint in semicomplete mixed graphs, that is, a mixed graph <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>V</mi>\n <mo>,</mo>\n <mi>E</mi>\n <mo>∪</mo>\n <mi>A</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $M=(V,E\\cup A)$</annotation>\n </semantics></math> in which every pair of distinct vertices has either an arc, an edge, or both an arc and an edge between them. We give a complete characterization of the negative instances and explain how this gives rise to a polynomial algorithm for the problem.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"705-721"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23199","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The so-called weak-2-linkage problem asks for a given digraph D = ( V , A ) $D=(V,A)$ and distinct vertices s 1 , s 2 , t 1 , t 2 ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$ of D $D$ whether D $D$ has arc-disjoint paths P 1 , P 2 ${P}_{1},{P}_{2}$ so that P i ${P}_{i}$ is an ( s i , t i ) $({s}_{i},{t}_{i})$ -path for i = 1 , 2 $i=1,2$ . This problem is NP-complete for general digraphs but the first author showed that the problem is polynomially solvable and that all exceptions can be characterized when D $D$ is a semicomplete digraph, that is, a digraph with no pair of nonadjacent vertices. In this paper we extend these results to paths which are both edge-disjoint and arc-disjoint in semicomplete mixed graphs, that is, a mixed graph M = ( V , E A ) $M=(V,E\cup A)$ in which every pair of distinct vertices has either an arc, an edge, or both an arc and an edge between them. We give a complete characterization of the negative instances and explain how this gives rise to a polynomial algorithm for the problem.

Abstract Image

半完全混合图中的边弧不相交路径
所谓的弱2连杆问题要求给定有向图D = (V)A)$ D=(V,A)$和不同的顶点s 1, s 2,t1,t 2 ${s}_{1},{s}_{2},{t}_{1},{t}_{2}$ D$ D$是否有弧不相交路径p1,P 2 ${P}_{1},{P}_{2}$,使得P i ${P}_{i}$是一个(S I, t I)$ ({S}_{I},{t}_{I})$ -path for I = 12$ i=1,2$。这个问题对于一般有向图来说是np完全的,但是第一作者证明了这个问题是多项式可解的,并且当D$ D$是一个半完全有向图,即一个没有一对非相邻顶点的有向图时,所有的例外都可以被表征。本文将这些结果推广到半完全混合图中边不相交和弧不相交的路径,即混合图M = (V,E∪A)$ M=(V,E\cup A)$其中每一对不同的顶点要么有一条弧,一条边,要么在它们之间既有弧又有边。我们给出了负实例的完整表征,并解释了这是如何产生一个多项式算法的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信