求助PDF
{"title":"2-退化图的平方团大小的紧上界","authors":"Seog-Jin Kim, Xiaopan Lian","doi":"10.1002/jgt.23201","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The <i>square</i> of a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${G}^{2}$</annotation>\n </semantics></math>, has the same vertex set as <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and has an edge between two vertices if the distance between them in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is at most 2. In general, <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)+1\\le \\chi ({G}^{2})\\le {\\rm{\\Delta }}{(G)}^{2}+1$</annotation>\n </semantics></math> for every graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Charpentier (2014) asked whether <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi ({G}^{2})\\le 2{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>mad</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> $\\mathrm{mad}(G)\\lt 4$</annotation>\n </semantics></math>. But Hocquard, Kim, and Pierron (2019) answered his question negatively. For every even value of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>g, they constructed a 2-degenerate graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})=\\frac{5}{2}{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. Note that if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph, then <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> $mad(G)\\lt 4$</annotation>\n </semantics></math>. Thus, we have that\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n \n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>:</mo>\n \n <mi>G</mi>\n <mspace></mspace>\n <mspace></mspace>\n \n <mtext>is a 2-degenerate graph</mtext>\n <mspace></mspace>\n \n <mo>}</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>.</mo>\n </mrow>\n <annotation> $\\frac{5}{2}{\\rm{\\Delta }}(G)\\le \\max \\{\\chi ({G}^{2}):G\\,\\,\\text{is a 2\\unicode{x02010}degenerate graph}\\,\\}\\le 3{\\rm{\\Delta }}(G)+1.$</annotation>\n </semantics></math></span><span></span></div>\n <p>So, it was naturally asked whether there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${D}_{0}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\ge {D}_{0}$</annotation>\n </semantics></math>. Recently, Cranston and Yu (2024) showed that <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>72</mn>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)+72$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph, and <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>60</mn>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)+60$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>1729</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\ge 1729$</annotation>\n </semantics></math>. We show that there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${D}_{0}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})\\le \\frac{5}{2}{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a 2-degenerate graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>D</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\ge {D}_{0}$</annotation>\n </semantics></math>. This upper bound on <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>G</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\omega ({G}^{2})$</annotation>\n </semantics></math> is tight by the construction in Hocquard, Kim, and Pierron.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"781-798"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Upper Bound on the Clique Size in the Square of 2-Degenerate Graphs\",\"authors\":\"Seog-Jin Kim, Xiaopan Lian\",\"doi\":\"10.1002/jgt.23201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The <i>square</i> of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, denoted <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation> ${G}^{2}$</annotation>\\n </semantics></math>, has the same vertex set as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and has an edge between two vertices if the distance between them in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is at most 2. In general, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <msup>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)+1\\\\le \\\\chi ({G}^{2})\\\\le {\\\\rm{\\\\Delta }}{(G)}^{2}+1$</annotation>\\n </semantics></math> for every graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Charpentier (2014) asked whether <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi ({G}^{2})\\\\le 2{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>mad</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo><</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n <annotation> $\\\\mathrm{mad}(G)\\\\lt 4$</annotation>\\n </semantics></math>. But Hocquard, Kim, and Pierron (2019) answered his question negatively. For every even value of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>g, they constructed a 2-degenerate graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mfrac>\\n <mn>5</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\omega ({G}^{2})=\\\\frac{5}{2}{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>. Note that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a 2-degenerate graph, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n \\n <mi>a</mi>\\n \\n <mi>d</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo><</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n <annotation> $mad(G)\\\\lt 4$</annotation>\\n </semantics></math>. Thus, we have that\\n\\n </p><div><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mn>5</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>max</mi>\\n <mrow>\\n <mo>{</mo>\\n \\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>:</mo>\\n \\n <mi>G</mi>\\n <mspace></mspace>\\n <mspace></mspace>\\n \\n <mtext>is a 2-degenerate graph</mtext>\\n <mspace></mspace>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>3</mn>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>.</mo>\\n </mrow>\\n <annotation> $\\\\frac{5}{2}{\\\\rm{\\\\Delta }}(G)\\\\le \\\\max \\\\{\\\\chi ({G}^{2}):G\\\\,\\\\,\\\\text{is a 2\\\\unicode{x02010}degenerate graph}\\\\,\\\\}\\\\le 3{\\\\rm{\\\\Delta }}(G)+1.$</annotation>\\n </semantics></math></span><span></span></div>\\n <p>So, it was naturally asked whether there exists a constant <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${D}_{0}$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>5</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi ({G}^{2})\\\\le \\\\frac{5}{2}{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a 2-degenerate graph with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>D</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\ge {D}_{0}$</annotation>\\n </semantics></math>. Recently, Cranston and Yu (2024) showed that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>5</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>72</mn>\\n </mrow>\\n <annotation> $\\\\omega ({G}^{2})\\\\le \\\\frac{5}{2}{\\\\rm{\\\\Delta }}(G)+72$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a 2-degenerate graph, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>5</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>60</mn>\\n </mrow>\\n <annotation> $\\\\omega ({G}^{2})\\\\le \\\\frac{5}{2}{\\\\rm{\\\\Delta }}(G)+60$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a 2-degenerate graph with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>1729</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\ge 1729$</annotation>\\n </semantics></math>. We show that there exists a constant <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${D}_{0}$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>5</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\omega ({G}^{2})\\\\le \\\\frac{5}{2}{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a 2-degenerate graph with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>D</mi>\\n \\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\ge {D}_{0}$</annotation>\\n </semantics></math>. This upper bound on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\omega ({G}^{2})$</annotation>\\n </semantics></math> is tight by the construction in Hocquard, Kim, and Pierron.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 4\",\"pages\":\"781-798\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23201\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23201","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用