{"title":"关于前置和后置半随机图过程","authors":"Pu Gao, Hidde Koerts","doi":"10.1002/jgt.23202","DOIUrl":null,"url":null,"abstract":"<p>We study the semi-random graph process, and a variant process recently suggested by Nick Wormald. We show that these two processes are asymptotically equally fast in constructing a semi-random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> that has property <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>, for the following examples of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>: (1) <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is the set of graphs containing a fixed <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-degenerate subgraph, where <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $d\\ge 1$</annotation>\n </semantics></math> is fixed and (2) <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is the set of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected graphs, where <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $k\\ge 1$</annotation>\n </semantics></math> is fixed. In particular, our result of the <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connectedness above settles the open case <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $k=2$</annotation>\n </semantics></math> of the original semi-random graph process. We also prove that there exist properties <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> where the two semi-random graph processes do not construct a graph in <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> asymptotically equally fast. We further propose some conjectures on <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> for which the two processes perform differently.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"819-831"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23202","citationCount":"0","resultStr":"{\"title\":\"On the Pre- and Post-Positional Semi-Random Graph Processes\",\"authors\":\"Pu Gao, Hidde Koerts\",\"doi\":\"10.1002/jgt.23202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the semi-random graph process, and a variant process recently suggested by Nick Wormald. We show that these two processes are asymptotically equally fast in constructing a semi-random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> that has property <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math>, for the following examples of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math>: (1) <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> is the set of graphs containing a fixed <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>-degenerate subgraph, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $d\\\\ge 1$</annotation>\\n </semantics></math> is fixed and (2) <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> is the set of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected graphs, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $k\\\\ge 1$</annotation>\\n </semantics></math> is fixed. In particular, our result of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connectedness above settles the open case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $k=2$</annotation>\\n </semantics></math> of the original semi-random graph process. We also prove that there exist properties <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> where the two semi-random graph processes do not construct a graph in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> asymptotically equally fast. We further propose some conjectures on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> for which the two processes perform differently.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 4\",\"pages\":\"819-831\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23202\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23202","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Pre- and Post-Positional Semi-Random Graph Processes
We study the semi-random graph process, and a variant process recently suggested by Nick Wormald. We show that these two processes are asymptotically equally fast in constructing a semi-random graph that has property , for the following examples of : (1) is the set of graphs containing a fixed -degenerate subgraph, where is fixed and (2) is the set of -connected graphs, where is fixed. In particular, our result of the -connectedness above settles the open case of the original semi-random graph process. We also prove that there exist properties where the two semi-random graph processes do not construct a graph in asymptotically equally fast. We further propose some conjectures on for which the two processes perform differently.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .