A Construction of a 3/2-Tough Plane Triangulation With No 2-Factor

IF 0.9 3区 数学 Q2 MATHEMATICS
Songling Shan
{"title":"A Construction of a 3/2-Tough Plane Triangulation With No 2-Factor","authors":"Songling Shan","doi":"10.1002/jgt.23209","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In 1956, Tutte proved the celebrated theorem that every 4-connected planar graph is Hamiltonian. This result implies that every more than <span></span><math>\n <semantics>\n <mrow>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics>\n </mrow>\n <annotation> $\\frac{3}{2}$</annotation>\n </semantics></math>-tough planar graph on at least three vertices is Hamiltonian and so has a 2-factor. Owens in 1999 constructed non-Hamiltonian maximal planar graphs of toughness arbitrarily close to <span></span><math>\n <semantics>\n <mrow>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics>\n </mrow>\n <annotation> $\\frac{3}{2}$</annotation>\n </semantics></math> and asked whether there exists a maximal non-Hamiltonian planar graph of toughness exactly <span></span><math>\n <semantics>\n <mrow>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics>\n </mrow>\n <annotation> $\\frac{3}{2}$</annotation>\n </semantics></math>. In fact, the graphs Owens constructed do not even contain a 2-factor. Thus the toughness of exactly <span></span><math>\n <semantics>\n <mrow>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics>\n </mrow>\n <annotation> $\\frac{3}{2}$</annotation>\n </semantics></math> is the only case left in asking the existence of 2-factors in tough planar graphs. This question was also asked by Bauer, Broersma, and Schmeichel in a survey. In this paper, we close this gap by constructing a maximal <span></span><math>\n <semantics>\n <mrow>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>3</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics>\n </mrow>\n <annotation> $\\frac{3}{2}$</annotation>\n </semantics></math>-tough plane graph with no 2-factor, answering the question asked by Owens as well as by Bauer, Broersma, and Schmeichel.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 1","pages":"5-18"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1956, Tutte proved the celebrated theorem that every 4-connected planar graph is Hamiltonian. This result implies that every more than 3 2 $\frac{3}{2}$ -tough planar graph on at least three vertices is Hamiltonian and so has a 2-factor. Owens in 1999 constructed non-Hamiltonian maximal planar graphs of toughness arbitrarily close to 3 2 $\frac{3}{2}$ and asked whether there exists a maximal non-Hamiltonian planar graph of toughness exactly 3 2 $\frac{3}{2}$ . In fact, the graphs Owens constructed do not even contain a 2-factor. Thus the toughness of exactly 3 2 $\frac{3}{2}$ is the only case left in asking the existence of 2-factors in tough planar graphs. This question was also asked by Bauer, Broersma, and Schmeichel in a survey. In this paper, we close this gap by constructing a maximal 3 2 $\frac{3}{2}$ -tough plane graph with no 2-factor, answering the question asked by Owens as well as by Bauer, Broersma, and Schmeichel.

无2因子的3/2-坚韧平面三角剖分的构造
1956年,Tutte证明了著名的定理,即每一个四连通平面图都是哈密顿图。这个结果表明,每一个至少有3个顶点的大于32个的平面图都是哈密顿的,因此有一个哈密顿因子。Owens在1999年构造了韧性任意接近32 $ $ frac{3}{2}$的非哈密顿极大平面图,并问是否存在一个最大的韧性非哈密顿平面图正好是32 $ $ frac{3}{2}$。事实上,Owens构造的图甚至不包含2因子。因此,恰好3 2 $\frac{3}{2}$的韧性是在强韧平面图中询问2因子是否存在的唯一情况。Bauer、Broersma和Schmeichel在一项调查中也问过这个问题。在本文中,我们通过构造一个没有2因子的最大32 $ $ frac{3}{2}$ $ -tough平面图来弥补这一差距,回答了欧文斯以及鲍尔、布洛尔斯马和舒梅切尔提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信