给定最大度的平面图的公平表着色

IF 0.9 3区 数学 Q2 MATHEMATICS
H. A. Kierstead, Alexandr Kostochka, Zimu Xiang
{"title":"给定最大度的平面图的公平表着色","authors":"H. A. Kierstead,&nbsp;Alexandr Kostochka,&nbsp;Zimu Xiang","doi":"10.1002/jgt.23203","DOIUrl":null,"url":null,"abstract":"<p>If <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> is a list assignment of <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> colors to each vertex of an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, then an <i>equitable</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-<i>coloring</i> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a proper coloring of vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> from their lists such that no color is used more than <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>n</mi>\n <mo>/</mo>\n <mi>r</mi>\n </mrow>\n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil n/r\\rceil $</annotation>\n </semantics></math> times. A graph is <i>equitably</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-<i>choosable</i> if it has an equitable <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-coloring for every <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-list assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>. In 2003, Kostochka, Pelsmajer, and West (KPW) conjectured that an analog of the famous Hajnal–Szemerédi Theorem on equitable coloring holds for equitable list coloring, namely, that for each positive integer <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> every graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with maximum degree at most <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $r-1$</annotation>\n </semantics></math> is equitably <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-choosable. The main result of this paper is that for each <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>≥</mo>\n <mn>9</mn>\n </mrow>\n <annotation> $r\\ge 9$</annotation>\n </semantics></math> and each planar graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, a stronger statement holds: if the maximum degree of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is at most <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is equitably <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-choosable. In fact, we prove the result for a broader class of graphs—the class <span></span><math>\n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal B} }}$</annotation>\n </semantics></math> of the graphs in which each bipartite subgraph <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n </mrow>\n <annotation> $B$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $|V(B)|\\ge 3$</annotation>\n </semantics></math> has at most <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>|</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>−</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $2|V(B)|-4$</annotation>\n </semantics></math> edges. Together with some known results, this implies that the KPW Conjecture holds for all graphs in <span></span><math>\n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal B} }}$</annotation>\n </semantics></math>, in particular, for all planar graphs. We also introduce the new stronger notion of <i>strongly equitable</i> (SE, for short) list coloring and prove all bounds for this parameter. An advantage of this is that if a graph is SE <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-choosable, then it is both equitably <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-choosable and equitably <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-colorable, while neither of being equitably <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-choosable and equitably <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-colorable implies the other.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 4","pages":"832-838"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23203","citationCount":"0","resultStr":"{\"title\":\"Equitable List Coloring of Planar Graphs With Given Maximum Degree\",\"authors\":\"H. A. Kierstead,&nbsp;Alexandr Kostochka,&nbsp;Zimu Xiang\",\"doi\":\"10.1002/jgt.23203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math> is a list assignment of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> colors to each vertex of an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, then an <i>equitable</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-<i>coloring</i> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a proper coloring of vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> from their lists such that no color is used more than <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>/</mo>\\n <mi>r</mi>\\n </mrow>\\n <mo>⌉</mo>\\n </mrow>\\n <annotation> $\\\\lceil n/r\\\\rceil $</annotation>\\n </semantics></math> times. A graph is <i>equitably</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-<i>choosable</i> if it has an equitable <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>-coloring for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-list assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <annotation> $L$</annotation>\\n </semantics></math>. In 2003, Kostochka, Pelsmajer, and West (KPW) conjectured that an analog of the famous Hajnal–Szemerédi Theorem on equitable coloring holds for equitable list coloring, namely, that for each positive integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> every graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with maximum degree at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $r-1$</annotation>\\n </semantics></math> is equitably <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-choosable. The main result of this paper is that for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>≥</mo>\\n <mn>9</mn>\\n </mrow>\\n <annotation> $r\\\\ge 9$</annotation>\\n </semantics></math> and each planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, a stronger statement holds: if the maximum degree of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is equitably <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-choosable. In fact, we prove the result for a broader class of graphs—the class <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℬ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal B} }}$</annotation>\\n </semantics></math> of the graphs in which each bipartite subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <annotation> $B$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $|V(B)|\\\\ge 3$</annotation>\\n </semantics></math> has at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>|</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n <mo>−</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $2|V(B)|-4$</annotation>\\n </semantics></math> edges. Together with some known results, this implies that the KPW Conjecture holds for all graphs in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℬ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal B} }}$</annotation>\\n </semantics></math>, in particular, for all planar graphs. We also introduce the new stronger notion of <i>strongly equitable</i> (SE, for short) list coloring and prove all bounds for this parameter. An advantage of this is that if a graph is SE <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-choosable, then it is both equitably <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-choosable and equitably <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-colorable, while neither of being equitably <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-choosable and equitably <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-colorable implies the other.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 4\",\"pages\":\"832-838\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23203\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23203","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果L$ L$是给n$ n$顶点图G$ G$的每个顶点分配r$ r$颜色的列表,那么G$ G$的合理的L$ L$ -着色是G$ G$列表中顶点的适当着色,使得没有颜色被使用超过(n/r) (n/r) (n/r) (n/r)如果一个图对于每个r$ r$列表赋值L都有一个公平的L$ L$着色,那么它就是公平的r$ r$可选择的L美元 $ .2003年,Kostochka, Pelsmajer, and West (KPW)推测,对于平等表着色,有一个类似于著名的hajnal - szemersamedi定理的等式,即:对于每一个正整数r$ r$,每一个最大度不超过r-1$ r-1$的图G$ G$是均匀的R $ R $ -可选的。本文的主要结果是,对于每一个r≥9$ r\ge 9$和每一个平面图G$ G$,有一个更强的命题成立:如果G$ G$的最大次不大于r$ r$,那么G$ G$是r$ r$可选的。事实上,我们证明了一个更广泛的图类的结果——类$ ${\rm{{\mathcal B}}}$,其中每个二部子图B$ B$具有| V (B)|≥3$ |V(B)|\ ge3 $最多有2 |V(B)|−42美元V (B) | 4 | $ 边缘。结合一些已知的结果,这表明KPW猜想适用于所有的图,特别是所有的平面图。我们还引入了强公平表着色的新概念,并证明了该参数的所有界。 这样做的一个好处是,如果一个图是SE r$ r$ -可选择的,那么它既是公平r$ r$ -可选择的,又是公平r$ r$ -可着色的,然而,公平的r$ r$ -可选择和公平的r$ r$ -可着色都不意味着另一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equitable List Coloring of Planar Graphs With Given Maximum Degree

Equitable List Coloring of Planar Graphs With Given Maximum Degree

If L $L$ is a list assignment of r $r$ colors to each vertex of an n $n$ -vertex graph G $G$ , then an equitable L $L$ -coloring of G $G$ is a proper coloring of vertices of G $G$ from their lists such that no color is used more than n / r $\lceil n/r\rceil $ times. A graph is equitably r $r$ -choosable if it has an equitable L $L$ -coloring for every r $r$ -list assignment L $L$ . In 2003, Kostochka, Pelsmajer, and West (KPW) conjectured that an analog of the famous Hajnal–Szemerédi Theorem on equitable coloring holds for equitable list coloring, namely, that for each positive integer r $r$ every graph G $G$ with maximum degree at most r 1 $r-1$ is equitably r $r$ -choosable. The main result of this paper is that for each r 9 $r\ge 9$ and each planar graph G $G$ , a stronger statement holds: if the maximum degree of G $G$ is at most r $r$ , then G $G$ is equitably r $r$ -choosable. In fact, we prove the result for a broader class of graphs—the class ${\rm{ {\mathcal B} }}$ of the graphs in which each bipartite subgraph B $B$ with | V ( B ) | 3 $|V(B)|\ge 3$ has at most 2 | V ( B ) | 4 $2|V(B)|-4$ edges. Together with some known results, this implies that the KPW Conjecture holds for all graphs in ${\rm{ {\mathcal B} }}$ , in particular, for all planar graphs. We also introduce the new stronger notion of strongly equitable (SE, for short) list coloring and prove all bounds for this parameter. An advantage of this is that if a graph is SE r $r$ -choosable, then it is both equitably r $r$ -choosable and equitably r $r$ -colorable, while neither of being equitably r $r$ -choosable and equitably r $r$ -colorable implies the other.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信