求助PDF
{"title":"超图的正共度密度","authors":"Anastasia Halfpap, Nathan Lemons, Cory Palmer","doi":"10.1002/jgt.23260","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The <i>minimum positive co-degree</i> of a nonempty <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, denoted <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is the maximum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-set contained in a hyperedge of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> distinct hyperedges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>. Given an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, we introduce the <i>positive co-degree Turán number</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> as the maximum positive co-degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> over all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> that do not contain <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> as a subhypergraph. In this paper, we concentrate on the behavior of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for 3-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>. In particular, we determine asymptotics and bounds for several well-known concrete 3-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> (e.g. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mn>4</mn>\n \n <mo>−</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> and the Fano plane). We also show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs, the limit <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>γ</mi>\n \n <mo>+</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≔</mo>\n \n <msub>\n <mi>lim</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>→</mo>\n \n <mi>∞</mi>\n </mrow>\n </msub>\n \n <mfrac>\n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mi>n</mi>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math> exists, and “jumps” from 0 to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>/</mo>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>, that is, it never takes on values in the interval <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>/</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, we characterize which <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>γ</mi>\n \n <mo>+</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>. Our motivation comes primarily from the study of (ordinary) co-degree Turán numbers where a number of results have been proved that inspire our results.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"209-222"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive Co-Degree Density of Hypergraphs\",\"authors\":\"Anastasia Halfpap, Nathan Lemons, Cory Palmer\",\"doi\":\"10.1002/jgt.23260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The <i>minimum positive co-degree</i> of a nonempty <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, denoted <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, is the maximum <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-set contained in a hyperedge of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is contained in at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> distinct hyperedges of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Given an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, we introduce the <i>positive co-degree Turán number</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mtext>co</mtext>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> as the maximum positive co-degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> over all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> that do not contain <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> as a subhypergraph. In this paper, we concentrate on the behavior of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mtext>co</mtext>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for 3-graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. In particular, we determine asymptotics and bounds for several well-known concrete 3-graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> (e.g. <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n \\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> and the Fano plane). We also show that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graphs, the limit <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>γ</mi>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≔</mo>\\n \\n <msub>\\n <mi>lim</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>→</mo>\\n \\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n \\n <mfrac>\\n <mrow>\\n <msup>\\n <mtext>co</mtext>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mi>n</mi>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math> exists, and “jumps” from 0 to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>/</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, that is, it never takes on values in the interval <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n \\n <mo>/</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Moreover, we characterize which <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> have <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>γ</mi>\\n \\n <mo>+</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. Our motivation comes primarily from the study of (ordinary) co-degree Turán numbers where a number of results have been proved that inspire our results.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 2\",\"pages\":\"209-222\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23260\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23260","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用