{"title":"Positive Co-Degree Density of Hypergraphs","authors":"Anastasia Halfpap, Nathan Lemons, Cory Palmer","doi":"10.1002/jgt.23260","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The <i>minimum positive co-degree</i> of a nonempty <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, denoted <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is the maximum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-set contained in a hyperedge of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> distinct hyperedges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>. Given an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, we introduce the <i>positive co-degree Turán number</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> as the maximum positive co-degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> over all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> that do not contain <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> as a subhypergraph. In this paper, we concentrate on the behavior of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for 3-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>. In particular, we determine asymptotics and bounds for several well-known concrete 3-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> (e.g. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mn>4</mn>\n \n <mo>−</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> and the Fano plane). We also show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs, the limit <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>γ</mi>\n \n <mo>+</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≔</mo>\n \n <msub>\n <mi>lim</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>→</mo>\n \n <mi>∞</mi>\n </mrow>\n </msub>\n \n <mfrac>\n <mrow>\n <msup>\n <mtext>co</mtext>\n \n <mo>+</mo>\n </msup>\n \n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mi>n</mi>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math> exists, and “jumps” from 0 to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>/</mo>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>, that is, it never takes on values in the interval <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>/</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, we characterize which <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>γ</mi>\n \n <mo>+</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>. Our motivation comes primarily from the study of (ordinary) co-degree Turán numbers where a number of results have been proved that inspire our results.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"209-222"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23260","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The minimum positive co-degree of a nonempty -graph , denoted , is the maximum such that if is an -set contained in a hyperedge of , then is contained in at least distinct hyperedges of . Given an -graph , we introduce the positive co-degree Turán number as the maximum positive co-degree over all -vertex -graphs that do not contain as a subhypergraph. In this paper, we concentrate on the behavior of for 3-graphs . In particular, we determine asymptotics and bounds for several well-known concrete 3-graphs (e.g. and the Fano plane). We also show that, for -graphs, the limit exists, and “jumps” from 0 to , that is, it never takes on values in the interval . Moreover, we characterize which -graphs have . Our motivation comes primarily from the study of (ordinary) co-degree Turán numbers where a number of results have been proved that inspire our results.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .