约束图的一个sharperramsey定理

IF 1 3区 数学 Q2 MATHEMATICS
Pavel Paták
{"title":"约束图的一个sharperramsey定理","authors":"Pavel Paták","doi":"10.1002/jgt.23226","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and a collection <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n </semantics></math> of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>R</mi>\n \n <mi>d</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> indexed by the subsets of vertices of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, a constrained drawing of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a drawing where each edge is drawn inside some set from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n </semantics></math>, in such a way that nonadjacent edges are drawn in sets with disjoint indices. In this paper we prove a Ramsey-type result for such drawings. Furthermore, we show how the results can be used to obtain Helly-type theorems. More precisely, we prove the following. For each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, there is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>b</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> with the following properties: If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a drawing of a graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n </semantics></math> is a collection of sets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>R</mi>\n \n <mi>d</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> such that each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>b</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-tuple <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math> of vertices lies in a set indexed by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math>, and contains at least one edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math>, then in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, we can find a constrained copy of the complete graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. As a direct consequence we obtain the following Helly-type result: For each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math>, there is a polynomial <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>h</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>b</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of degree at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> such that the following holds. For every family <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> of sets in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>R</mi>\n \n <mi>d</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, its Helly number is at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>h</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>b</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, provided that the intersection of any nonempty subfamily has at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math> path-connected components, and trivial homology groups <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>H</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>H</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>. </mo>\n \n <msub>\n <mi>H</mi>\n \n <mrow>\n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This dramatically improves the original theorem by Matoušek which had stronger assumption and a tower-like bound on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>h</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>b</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Under the same assumptions, our technique can also be used to bound Radon numbers.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"401-411"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23226","citationCount":"0","resultStr":"{\"title\":\"A Sharper Ramsey Theorem for Constrained Drawings\",\"authors\":\"Pavel Paták\",\"doi\":\"10.1002/jgt.23226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and a collection <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of subsets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>R</mi>\\n \\n <mi>d</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> indexed by the subsets of vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, a constrained drawing of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a drawing where each edge is drawn inside some set from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, in such a way that nonadjacent edges are drawn in sets with disjoint indices. In this paper we prove a Ramsey-type result for such drawings. Furthermore, we show how the results can be used to obtain Helly-type theorems. More precisely, we prove the following. For each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, there is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>b</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> with the following properties: If <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a drawing of a graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a collection of sets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>R</mi>\\n \\n <mi>d</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> such that each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>b</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-tuple <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of vertices lies in a set indexed by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and contains at least one edge in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, we can find a constrained copy of the complete graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. As a direct consequence we obtain the following Helly-type result: For each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, there is a polynomial <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>h</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>b</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of degree at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> such that the following holds. For every family <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of sets in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>R</mi>\\n \\n <mi>d</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, its Helly number is at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>h</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>b</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, provided that the intersection of any nonempty subfamily has at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> path-connected components, and trivial homology groups <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>H</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>H</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>. </mo>\\n \\n <msub>\\n <mi>H</mi>\\n \\n <mrow>\\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. This dramatically improves the original theorem by Matoušek which had stronger assumption and a tower-like bound on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>h</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>b</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Under the same assumptions, our technique can also be used to bound Radon numbers.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 4\",\"pages\":\"401-411\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23226\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23226\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23226","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图G和R的子集C的集合d由G的顶点子集索引,G的约束图是这样一种图,其中每条边都画在C的某个集合内,以这样一种方式,不相邻的边画在指标不相交的集合中。本文证明了这类图的一个ramsey型结果。此外,我们还展示了如何使用这些结果来获得helly型定理。更准确地说,我们证明了以下几点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Sharper Ramsey Theorem for Constrained Drawings

A Sharper Ramsey Theorem for Constrained Drawings

Given a graph G and a collection C of subsets of R d indexed by the subsets of vertices of G , a constrained drawing of G is a drawing where each edge is drawn inside some set from C , in such a way that nonadjacent edges are drawn in sets with disjoint indices. In this paper we prove a Ramsey-type result for such drawings. Furthermore, we show how the results can be used to obtain Helly-type theorems. More precisely, we prove the following. For each n and b , there is N = O ( b 2 n 3 ) with the following properties: If G is a drawing of a graph on N vertices and C is a collection of sets of R d such that each ( b + 1 ) -tuple T of vertices lies in a set indexed by T , and contains at least one edge in T , then in G , we can find a constrained copy of the complete graph K n . As a direct consequence we obtain the following Helly-type result: For each d , there is a polynomial h ( b ) of degree at most 2 d + 3 such that the following holds. For every family of sets in R d , its Helly number is at most h ( b ) , provided that the intersection of any nonempty subfamily has at most b path-connected components, and trivial homology groups H 1 ,  H 2 , H d 2 1 . This dramatically improves the original theorem by Matoušek which had stronger assumption and a tower-like bound on h ( b ) . Under the same assumptions, our technique can also be used to bound Radon numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信