Daniel W. Cranston, Evelyne Smith-Roberge
求助PDF
{"title":"平面图的列表填充与对应填充","authors":"Daniel W. Cranston, Evelyne Smith-Roberge","doi":"10.1002/jgt.23222","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and a list assignment <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>, an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-packing consists of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-colorings <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>φ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>φ</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>φ</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <msub>\n <mi>φ</mi>\n \n <mi>j</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> and all distinct <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> denote the smallest <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-packing for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> denote the set of all planar graphs with girth at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. We show that (i) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and (ii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and (iii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> for correspondence coloring, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>c</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>. In fact, all bounds stated above for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> also hold for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>c</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"339-352"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"List Packing and Correspondence Packing of Planar Graphs\",\"authors\":\"Daniel W. Cranston, Evelyne Smith-Roberge\",\"doi\":\"10.1002/jgt.23222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and a list assignment <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>L</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-packing consists of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-colorings <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>φ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>φ</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>φ</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≠</mo>\\n \\n <msub>\\n <mi>φ</mi>\\n \\n <mi>j</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and all distinct <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>,</mo>\\n \\n <mi>j</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> denote the smallest <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-packing for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>L</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> denote the set of all planar graphs with girth at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. We show that (i) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and (ii) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and (iii) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> for correspondence coloring, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>c</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>. In fact, all bounds stated above for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> also hold for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>c</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"339-352\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23222\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23222","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用