平面图的列表填充与对应填充

IF 0.9 3区 数学 Q2 MATHEMATICS
Daniel W. Cranston, Evelyne Smith-Roberge
{"title":"平面图的列表填充与对应填充","authors":"Daniel W. Cranston,&nbsp;Evelyne Smith-Roberge","doi":"10.1002/jgt.23222","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and a list assignment <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>, an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-packing consists of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-colorings <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>φ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>φ</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>φ</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <msub>\n <mi>φ</mi>\n \n <mi>j</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> and all distinct <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> denote the smallest <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-packing for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> denote the set of all planar graphs with girth at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. We show that (i) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and (ii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and (iii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> for correspondence coloring, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>c</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>. In fact, all bounds stated above for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>ℓ</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> also hold for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>χ</mi>\n \n <mi>c</mi>\n \n <mo>⋆</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"339-352"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"List Packing and Correspondence Packing of Planar Graphs\",\"authors\":\"Daniel W. Cranston,&nbsp;Evelyne Smith-Roberge\",\"doi\":\"10.1002/jgt.23222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and a list assignment <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>L</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-packing consists of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-colorings <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>φ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>φ</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>φ</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≠</mo>\\n \\n <msub>\\n <mi>φ</mi>\\n \\n <mi>j</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and all distinct <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>,</mo>\\n \\n <mi>j</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> denote the smallest <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-packing for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>L</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>=</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> denote the set of all planar graphs with girth at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. We show that (i) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and (ii) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and (iii) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> for correspondence coloring, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>c</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>. In fact, all bounds stated above for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>ℓ</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> also hold for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>χ</mi>\\n \\n <mi>c</mi>\\n \\n <mo>⋆</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"339-352\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23222\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23222","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图G和一个表赋值L具有∣L (V)∣= k对于所有V,L -填料由L -色φ 1组成,……φ k使得φ I (v)≠φ j (v)V和所有不同的I,J∈{1,…,K}。 设χ n - (G)表示最小值k使得G对每一个L都有L -填料∣L (v)∣= k对于所有的v。设kp表示所有周长至少为k的平面图的集合。我们证明了(i) χ z - (G)≤对于所有G∈p3和(ii) χ对于所有的向量,都可以用n - n (G)≤5G∈p0, (iii) χ _1 -(G)≤4对于所有G∈P 5。第一部分对Cambie, Cames van Batenburg, Davies和Kang的问题进行了进展。 我们还考虑了对应着色的χ n -百科的类比,χ c—事实上,上述所有关于χ n -的边界也适用于χ c⋆ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
List Packing and Correspondence Packing of Planar Graphs

For a graph G and a list assignment L with L ( v ) = k for all v , an L -packing consists of L -colorings φ 1 , , φ k such that φ i ( v ) φ j ( v ) for all v and all distinct i , j { 1 , , k } . Let χ ( G ) denote the smallest k such that G has an L -packing for every L with L ( v ) = k for all v . Let P k denote the set of all planar graphs with girth at least k . We show that (i) χ ( G ) 8 for all G P 3 and (ii) χ ( G ) 5 for all G P 4 and (iii) χ ( G ) 4 for all G P 5 . Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue of χ for correspondence coloring, χ c . In fact, all bounds stated above for χ also hold for χ c .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信