求助PDF
{"title":"度约束下图分区上顶点分布的高度条件","authors":"Michitaka Furuya, Shun-ichi Maezawa","doi":"10.1002/jgt.23228","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> be a graph, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>f</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>:</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>→</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be functions. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the union of edges shared by two cycles of order at most four, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>\\</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. In this paper, we prove that if for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>u</mi>\n \n <mo>∈</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>h</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>h</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>f</mi>\n \n <mn>1</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <msub>\n <mi>f</mi>\n \n <mn>2</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <mn>2</mn>\n \n <mi>h</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>min</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mn>1</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <msub>\n <mi>f</mi>\n \n <mn>2</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n \n <mo>−</mo>\n \n <mn>2</mn>\n \n <mi>h</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> can be partitioned into two subgraphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <msub>\n <mi>G</mi>\n \n <mi>i</mi>\n </msub>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>f</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>u</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. The result is a generalization of some known results and gives a distribution of vertices required by a high-degree condition on partitions of graphs under degree constraints.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"315-331"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of Vertices Required a High-Degree Condition on Partitions of Graphs Under Degree Constraints\",\"authors\":\"Michitaka Furuya, Shun-ichi Maezawa\",\"doi\":\"10.1002/jgt.23228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a graph, and let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>:</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>→</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> be functions. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> be the union of edges shared by two cycles of order at most four, and let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>\\\\</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. In this paper, we prove that if for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>u</mi>\\n \\n <mo>∈</mo>\\n \\n <msub>\\n <mi>T</mi>\\n \\n <mi>h</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>h</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n \\n <mi>h</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>min</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n \\n <mi>h</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> can be partitioned into two subgraphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>d</mi>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>u</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. The result is a generalization of some known results and gives a distribution of vertices required by a high-degree condition on partitions of graphs under degree constraints.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"315-331\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23228\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23228","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用