{"title":"Spectral Extrema of Graphs With Fixed Size: Forbidden a Fan Graph, a Friendship Graph, or a Theta Graph","authors":"Shuchao Li, Sishu Zhao, Lantao Zou","doi":"10.1002/jgt.23287","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges. This can be regarded as a spectral characterization of the existence of the subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> within <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. A significant contribution to this problem was made by Nikiforov (2002). He proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <msqrt>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </msqrt>\n </mrow>\n </mrow>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </mrow>\n </semantics></math>, respectively. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the fan graph, that is, the join of a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and a path <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the friendship graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> triangles by sharing a common vertex. In this paper, we utilize the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>9</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>6</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>5</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>46</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>4</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>56</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>196</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <msqrt>\n <mrow>\n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msqrt>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Equality holds if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>≅</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∨</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mi>m</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>−</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>9</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>6</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>5</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>46</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>4</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>56</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>196</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <msqrt>\n <mrow>\n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msqrt>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Equality holds if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>≅</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∨</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mi>m</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>−</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This confirms a conjecture proposed by Li et al. Finally, we identify the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> having the largest spectral radius, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n \n <mo>⩾</mo>\n \n <mi>p</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>+</mo>\n \n <mi>q</mi>\n \n <mo>⩾</mo>\n \n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>. A further research problem is also proposed.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"483-495"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius of an -free graph with edges. This can be regarded as a spectral characterization of the existence of the subgraph within . A significant contribution to this problem was made by Nikiforov (2002). He proved that for every -free graph of size . Let be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths , respectively. Let be the fan graph, that is, the join of a and a path , and let be the friendship graph obtained from triangles by sharing a common vertex. In this paper, we utilize the -core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for with , if is -free, then . Equality holds if and only if . This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for with , if is -free of size , then . Equality holds if and only if . This confirms a conjecture proposed by Li et al. Finally, we identify the -free graph of size having the largest spectral radius, where and . A further research problem is also proposed.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .