最小k(边)连通图的最大谱半径

IF 1 3区 数学 Q2 MATHEMATICS
Mingqing Zhai, Huiqiu Lin, Jinlong Shu
{"title":"最小k(边)连通图的最大谱半径","authors":"Mingqing Zhai,&nbsp;Huiqiu Lin,&nbsp;Jinlong Shu","doi":"10.1002/jgt.23286","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Minimally <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-connected graphs are the main focus of both structural and extremal graph theory. Perhaps the most heavily investigated parameter of this graph family is the number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math> of vertices of degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. Mader proved a tight lower bound for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>, independent of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>, and the order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>. In 1981, inspired by matroids, Oxley discovered that in many cases, a considerably better bound can be given by using the size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> as a parameter. Along this line, Schmidt [Tight bounds for the vertices of degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> in minimally <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-connected graphs, J. Graph Theory 88 (2018) 146–153] showed that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>≥</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, and this bound is best possible. Another interesting problem was posed for connected graphs with fixed size: what is the maximal spectral radius of a minimally <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-(edge)-connected graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges? This contribution can be traced back to Brualdi and Hoffman, who also conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is the extremal graph among all connected graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is obtained from the complete graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> by adding a new vertex of degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mfenced>\n <mfrac>\n <mi>s</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math>. This conjecture was completely solved by Rowlinson in 1988 using double eigenvector transformations. Recently, the case for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> was answered by Lou, Gao and Huang (2023). In this paper, we solve the problem completely, and further, for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the unique extremal graph is determined.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"468-482"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Spectral Radius of Minimally \\n \\n \\n \\n k\\n \\n \\n -(Edge)-Connected Graphs\",\"authors\":\"Mingqing Zhai,&nbsp;Huiqiu Lin,&nbsp;Jinlong Shu\",\"doi\":\"10.1002/jgt.23286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Minimally <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-connected graphs are the main focus of both structural and extremal graph theory. Perhaps the most heavily investigated parameter of this graph family is the number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> of vertices of degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Mader proved a tight lower bound for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>, independent of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and the order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. In 1981, inspired by matroids, Oxley discovered that in many cases, a considerably better bound can be given by using the size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> as a parameter. Along this line, Schmidt [Tight bounds for the vertices of degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> in minimally <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-connected graphs, J. Graph Theory 88 (2018) 146–153] showed that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n \\n <mo>≥</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, and this bound is best possible. Another interesting problem was posed for connected graphs with fixed size: what is the maximal spectral radius of a minimally <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-(edge)-connected graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> edges? This contribution can be traced back to Brualdi and Hoffman, who also conjectured that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is the extremal graph among all connected graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> edges, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is obtained from the complete graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> by adding a new vertex of degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mfenced>\\n <mfrac>\\n <mi>s</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </semantics></math>. This conjecture was completely solved by Rowlinson in 1988 using double eigenvector transformations. Recently, the case for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> was answered by Lou, Gao and Huang (2023). In this paper, we solve the problem completely, and further, for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>6</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, the unique extremal graph is determined.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"468-482\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23286\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23286","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最小k连通图是结构图论和极值图论的主要研究方向。也许这个图族中研究得最多的参数是次数顶点的个数∣vk∣k .Mader证明了一个与k无关的严密下界,(n)1981年,受拟阵的启发,奥克斯利发现,在许多情况下,使用大小m作为参数可以给出一个更好的边界。沿着这条线,Schmidt[最小k连通图中k次顶点的紧界,J.图论88(2018)146-153]证明了∣V k∣≥max {(k + 1) n−2m;(m−n+ k)∕(K−1)²},这个边界是最好的。 另一个有趣的问题是对于固定大小的连通图:在m条边上的最小k(边)连通图的最大谱半径是多少?这一贡献可以追溯到Brualdi和Hoffman,他还推测gm是所有有m条边的连通图中的极值图,其中G m是由完全图K s by得到的添加一个度为m - s2的新顶点。1988年,罗林森用双特征向量变换完全解决了这个猜想。最近,Lou, Gao和Huang(2023)回答了k = 2的情况。本文彻底解决了这一问题,并进一步对于k≥2且m = Ω (K 6)时,确定了唯一极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximal Spectral Radius of Minimally 
         
            
               
                  k
               
            
         -(Edge)-Connected Graphs

Maximal Spectral Radius of Minimally k -(Edge)-Connected Graphs

Minimally k -connected graphs are the main focus of both structural and extremal graph theory. Perhaps the most heavily investigated parameter of this graph family is the number V k of vertices of degree k . Mader proved a tight lower bound for V k , independent of k , and the order n . In 1981, inspired by matroids, Oxley discovered that in many cases, a considerably better bound can be given by using the size m as a parameter. Along this line, Schmidt [Tight bounds for the vertices of degree k in minimally k -connected graphs, J. Graph Theory 88 (2018) 146–153] showed that V k max { ( k + 1 ) n 2 m , ( m n + k ) ( k 1 ) } , and this bound is best possible. Another interesting problem was posed for connected graphs with fixed size: what is the maximal spectral radius of a minimally k -(edge)-connected graph on m edges? This contribution can be traced back to Brualdi and Hoffman, who also conjectured that G m is the extremal graph among all connected graphs with m edges, where G m is obtained from the complete graph K s by adding a new vertex of degree m s 2 . This conjecture was completely solved by Rowlinson in 1988 using double eigenvector transformations. Recently, the case for k = 2 was answered by Lou, Gao and Huang (2023). In this paper, we solve the problem completely, and further, for each k 2 and m = Ω ( k 6 ) , the unique extremal graph is determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信