求助PDF
{"title":"最小k(边)连通图的最大谱半径","authors":"Mingqing Zhai, Huiqiu Lin, Jinlong Shu","doi":"10.1002/jgt.23286","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Minimally <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-connected graphs are the main focus of both structural and extremal graph theory. Perhaps the most heavily investigated parameter of this graph family is the number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math> of vertices of degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. Mader proved a tight lower bound for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n </semantics></math>, independent of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>, and the order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>. In 1981, inspired by matroids, Oxley discovered that in many cases, a considerably better bound can be given by using the size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> as a parameter. Along this line, Schmidt [Tight bounds for the vertices of degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> in minimally <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-connected graphs, J. Graph Theory 88 (2018) 146–153] showed that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>V</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>≥</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, and this bound is best possible. Another interesting problem was posed for connected graphs with fixed size: what is the maximal spectral radius of a minimally <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-(edge)-connected graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges? This contribution can be traced back to Brualdi and Hoffman, who also conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is the extremal graph among all connected graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is obtained from the complete graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> by adding a new vertex of degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mfenced>\n <mfrac>\n <mi>s</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math>. This conjecture was completely solved by Rowlinson in 1988 using double eigenvector transformations. Recently, the case for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> was answered by Lou, Gao and Huang (2023). In this paper, we solve the problem completely, and further, for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the unique extremal graph is determined.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"468-482"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Spectral Radius of Minimally \\n \\n \\n \\n k\\n \\n \\n -(Edge)-Connected Graphs\",\"authors\":\"Mingqing Zhai, Huiqiu Lin, Jinlong Shu\",\"doi\":\"10.1002/jgt.23286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Minimally <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-connected graphs are the main focus of both structural and extremal graph theory. Perhaps the most heavily investigated parameter of this graph family is the number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> of vertices of degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Mader proved a tight lower bound for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>, independent of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and the order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. In 1981, inspired by matroids, Oxley discovered that in many cases, a considerably better bound can be given by using the size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> as a parameter. Along this line, Schmidt [Tight bounds for the vertices of degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> in minimally <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-connected graphs, J. Graph Theory 88 (2018) 146–153] showed that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>V</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n \\n <mo>≥</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, and this bound is best possible. Another interesting problem was posed for connected graphs with fixed size: what is the maximal spectral radius of a minimally <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-(edge)-connected graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> edges? This contribution can be traced back to Brualdi and Hoffman, who also conjectured that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is the extremal graph among all connected graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> edges, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is obtained from the complete graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> by adding a new vertex of degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mfenced>\\n <mfrac>\\n <mi>s</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </semantics></math>. This conjecture was completely solved by Rowlinson in 1988 using double eigenvector transformations. Recently, the case for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> was answered by Lou, Gao and Huang (2023). In this paper, we solve the problem completely, and further, for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>6</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, the unique extremal graph is determined.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"468-482\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23286\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23286","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用