线性时间有向图的brooks型着色

IF 1 3区 数学 Q2 MATHEMATICS
Daniel Gonçalves, Lucas Picasarri-Arrieta, Amadeus Reinald
{"title":"线性时间有向图的brooks型着色","authors":"Daniel Gonçalves,&nbsp;Lucas Picasarri-Arrieta,&nbsp;Amadeus Reinald","doi":"10.1002/jgt.23266","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Brooks' Theorem is a fundamental result on graph colouring, stating that the chromatic number of a graph is almost always upper bounded by its maximal degree. Lovász showed that such a colouring may then be computed in linear time when it exists. Many analogues are known for variants of (di)graph colouring, notably for list-colouring and partitions into subgraphs with prescribed degeneracy. One of the most general results of this kind is due to Borodin, Kostochka, and Toft, when asking for classes of colours to satisfy ‘variable degeneracy’ constraints. An extension of this result to digraphs has recently been proposed by Bang-Jensen, Schweser, and Stiebitz, by considering colourings as partitions into ‘variable weakly degenerate’ subdigraphs. Unlike earlier variants, there exists no linear-time algorithm to produce colourings for these generalisations. We introduce the notion of <i>(variable) bidegeneracy</i> for digraphs, capturing multiple (di)graph degeneracy variants. We define the corresponding concept of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-dicolouring, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>f</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is a vector of functions, and an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-dicolouring requires vertices coloured <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n </mrow>\n </mrow>\n </semantics></math> to induce a ‘strictly-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-bidegenerate’ subdigraph. We prove an analogue of Brooks' theorem for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-dicolouring, generalising the result of Bang-Jensen et al., and earlier analogues in turn. Our new approach provides a linear-time algorithm that, given a digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math>, either produces an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-dicolouring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math>, or correctly certifies that none exist. This yields the first linear-time algorithms to compute (di)colourings corresponding to the aforementioned generalisations of Brooks' theorem. In turn, it gives an unified framework to compute such colourings for various intermediate generalisations of Brooks' theorem such as list-(di)colouring and partitioning into (variable) degenerate sub(di)graphs.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"496-513"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brooks-Type Colourings of Digraphs in Linear Time\",\"authors\":\"Daniel Gonçalves,&nbsp;Lucas Picasarri-Arrieta,&nbsp;Amadeus Reinald\",\"doi\":\"10.1002/jgt.23266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Brooks' Theorem is a fundamental result on graph colouring, stating that the chromatic number of a graph is almost always upper bounded by its maximal degree. Lovász showed that such a colouring may then be computed in linear time when it exists. Many analogues are known for variants of (di)graph colouring, notably for list-colouring and partitions into subgraphs with prescribed degeneracy. One of the most general results of this kind is due to Borodin, Kostochka, and Toft, when asking for classes of colours to satisfy ‘variable degeneracy’ constraints. An extension of this result to digraphs has recently been proposed by Bang-Jensen, Schweser, and Stiebitz, by considering colourings as partitions into ‘variable weakly degenerate’ subdigraphs. Unlike earlier variants, there exists no linear-time algorithm to produce colourings for these generalisations. We introduce the notion of <i>(variable) bidegeneracy</i> for digraphs, capturing multiple (di)graph degeneracy variants. We define the corresponding concept of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-dicolouring, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is a vector of functions, and an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-dicolouring requires vertices coloured <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> to induce a ‘strictly-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-bidegenerate’ subdigraph. We prove an analogue of Brooks' theorem for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-dicolouring, generalising the result of Bang-Jensen et al., and earlier analogues in turn. Our new approach provides a linear-time algorithm that, given a digraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, either produces an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-dicolouring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, or correctly certifies that none exist. This yields the first linear-time algorithms to compute (di)colourings corresponding to the aforementioned generalisations of Brooks' theorem. In turn, it gives an unified framework to compute such colourings for various intermediate generalisations of Brooks' theorem such as list-(di)colouring and partitioning into (variable) degenerate sub(di)graphs.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"496-513\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23266\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23266","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

布鲁克斯定理是关于图着色的一个基本结论,指出图的色数几乎总是以它的最大度为上界。Lovász表明,这样的着色可以在线性时间内计算出来。已知许多类似的(di)图着色的变体,特别是列表着色和划分为具有规定退化的子图。这类最普遍的结果之一是由Borodin, Kostochka和Toft提出的,他们要求颜色的类别满足“可变简并性”约束。最近Bang-Jensen、Schweser和Stiebitz提出了将这一结果扩展到有向图的方法,他们将着色视为“可变弱简并”子有向图的分区。与早期的变体不同,不存在线性时间算法来为这些泛化生成着色。我们引入有向图的(变量)双降的概念,捕获多个(di)图退化变体。我们定义了相应的F -变色概念,其中F = (F 1), f (s)是一个函数向量,而F -变色要求顶点i被着色,以诱导出一个严格- F i-bidegenerate subdigraph。我们证明了布鲁克斯的F -变色定理的一个类似物,推广了Bang-Jensen等人的结果,以及之前的类似物。我们的新方法提供了一个线性时间算法,给定一个有向图D,要么产生D的F变色,要么正确地证明不存在。这产生了第一个线性时间算法来计算(di)着色,对应于前面提到的布鲁克斯定理的推广。反过来,它给出了一个统一的框架来计算布鲁克斯定理的各种中间推广,如列表-(di)着色和划分为(可变)退化子(di)图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brooks-Type Colourings of Digraphs in Linear Time

Brooks-Type Colourings of Digraphs in Linear Time

Brooks' Theorem is a fundamental result on graph colouring, stating that the chromatic number of a graph is almost always upper bounded by its maximal degree. Lovász showed that such a colouring may then be computed in linear time when it exists. Many analogues are known for variants of (di)graph colouring, notably for list-colouring and partitions into subgraphs with prescribed degeneracy. One of the most general results of this kind is due to Borodin, Kostochka, and Toft, when asking for classes of colours to satisfy ‘variable degeneracy’ constraints. An extension of this result to digraphs has recently been proposed by Bang-Jensen, Schweser, and Stiebitz, by considering colourings as partitions into ‘variable weakly degenerate’ subdigraphs. Unlike earlier variants, there exists no linear-time algorithm to produce colourings for these generalisations. We introduce the notion of (variable) bidegeneracy for digraphs, capturing multiple (di)graph degeneracy variants. We define the corresponding concept of F -dicolouring, where F = ( f 1 , , f s ) is a vector of functions, and an F -dicolouring requires vertices coloured i to induce a ‘strictly- f i -bidegenerate’ subdigraph. We prove an analogue of Brooks' theorem for F -dicolouring, generalising the result of Bang-Jensen et al., and earlier analogues in turn. Our new approach provides a linear-time algorithm that, given a digraph D , either produces an F -dicolouring of D , or correctly certifies that none exist. This yields the first linear-time algorithms to compute (di)colourings corresponding to the aforementioned generalisations of Brooks' theorem. In turn, it gives an unified framework to compute such colourings for various intermediate generalisations of Brooks' theorem such as list-(di)colouring and partitioning into (variable) degenerate sub(di)graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信