固定大小图的谱极值:禁止风扇图、友谊图或Theta图

IF 1 3区 数学 Q2 MATHEMATICS
Shuchao Li, Sishu Zhao, Lantao Zou
{"title":"固定大小图的谱极值:禁止风扇图、友谊图或Theta图","authors":"Shuchao Li,&nbsp;Sishu Zhao,&nbsp;Lantao Zou","doi":"10.1002/jgt.23287","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges. This can be regarded as a spectral characterization of the existence of the subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> within <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. A significant contribution to this problem was made by Nikiforov (2002). He proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <msqrt>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </msqrt>\n </mrow>\n </mrow>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </mrow>\n </semantics></math>, respectively. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the fan graph, that is, the join of a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and a path <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the friendship graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> triangles by sharing a common vertex. In this paper, we utilize the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>9</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>6</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>5</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>46</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>4</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>56</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>196</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <msqrt>\n <mrow>\n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msqrt>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Equality holds if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>≅</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∨</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mi>m</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>−</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>9</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>6</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>5</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>46</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>4</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>56</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>196</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <msqrt>\n <mrow>\n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msqrt>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Equality holds if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>≅</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∨</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mi>m</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>−</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This confirms a conjecture proposed by Li et al. Finally, we identify the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> having the largest spectral radius, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n \n <mo>⩾</mo>\n \n <mi>p</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>+</mo>\n \n <mi>q</mi>\n \n <mo>⩾</mo>\n \n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>. A further research problem is also proposed.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"483-495"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Extrema of Graphs With Fixed Size: Forbidden a Fan Graph, a Friendship Graph, or a Theta Graph\",\"authors\":\"Shuchao Li,&nbsp;Sishu Zhao,&nbsp;Lantao Zou\",\"doi\":\"10.1002/jgt.23287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> edges. This can be regarded as a spectral characterization of the existence of the subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> within <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. A significant contribution to this problem was made by Nikiforov (2002). He proved that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <msqrt>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msqrt>\\n </mrow>\\n </mrow>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, respectively. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> be the fan graph, that is, the join of a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and a path <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> be the friendship graph obtained from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> triangles by sharing a common vertex. In this paper, we utilize the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>⩾</mo>\\n \\n <mfrac>\\n <mn>9</mn>\\n \\n <mn>4</mn>\\n </mfrac>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>6</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>6</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>5</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>46</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>4</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>56</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>196</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <msqrt>\\n <mrow>\\n <mn>4</mn>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msqrt>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>. Equality holds if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>≅</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∨</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </mfrac>\\n \\n <mo>−</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>⩾</mo>\\n \\n <mfrac>\\n <mn>9</mn>\\n \\n <mn>4</mn>\\n </mfrac>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>6</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>6</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>5</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>46</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>4</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>56</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>196</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <msqrt>\\n <mrow>\\n <mn>4</mn>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msqrt>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>. Equality holds if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>≅</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∨</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </mfrac>\\n \\n <mo>−</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. This confirms a conjecture proposed by Li et al. Finally, we identify the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> having the largest spectral radius, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>q</mi>\\n \\n <mo>⩾</mo>\\n \\n <mi>p</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>+</mo>\\n \\n <mi>q</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>2</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. A further research problem is also proposed.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"483-495\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23287\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,Brualdi-Hoffman-Turán-type问题询问的是an的最大谱半径λ (G)有m条边的无F图G。这可以看作是子图F在G内存在的谱表征。Nikiforov(2002)对这个问题做出了重大贡献。他证明了λ (G)≤2m(1−1∕r),每K r + 1大小为m的自由图。设θ 1 p,Q是图,它是通过连接两个顶点得到的,这两个顶点有三条内部不相交的路径,长度为1 p,分别是Q。 设F k为扇形图,即,k1和路径kp−的连接1,令F k,3是k个三角形共用一个顶点得到的友谊图。本文利用k核方法和谱技术来解决固定大小图的谱极值问题。 其次,我们表明,对于m或9 4 k 6 + 6k5 + 46 k4 + 56k3 + 196k2, K大于或等于3,如果G是F k,3个尺寸为m的自由;λ (G)≥k−1 + 4 m−k2 + 1 2。当且仅当G≠K K∨(M k−k−1(1) k;这证实了Li等人提出的一个猜想。 最后,我们确定了θ 1 p,大小为m的无Q图具有最大的谱半径,q或p或3和p + q在哪里大于或等于2k + 1。并提出了进一步研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectral Extrema of Graphs With Fixed Size: Forbidden a Fan Graph, a Friendship Graph, or a Theta Graph

Spectral Extrema of Graphs With Fixed Size: Forbidden a Fan Graph, a Friendship Graph, or a Theta Graph

It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius λ ( G ) of an F -free graph G with m edges. This can be regarded as a spectral characterization of the existence of the subgraph F within G . A significant contribution to this problem was made by Nikiforov (2002). He proved that λ ( G ) 2 m ( 1 1 r ) for every K r + 1 -free graph of size m . Let θ 1 , p , q be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths 1 , p , q , respectively. Let F k be the fan graph, that is, the join of a K 1 and a path P k 1 , and let F k , 3 be the friendship graph obtained from k triangles by sharing a common vertex. In this paper, we utilize the k -core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for m 9 4 k 6 + 6 k 5 + 46 k 4 + 56 k 3 + 196 k 2 with k 3 , if G is F 2 k + 2 -free, then λ ( G ) k 1 + 4 m k 2 + 1 2 . Equality holds if and only if G K k ( m k k 1 2 ) K 1 . This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for m 9 4 k 6 + 6 k 5 + 46 k 4 + 56 k 3 + 196 k 2 with k 3 , if G is F k , 3 -free of size m , then λ ( G ) k 1 + 4 m k 2 + 1 2 . Equality holds if and only if G K k ( m k k 1 2 ) K 1 . This confirms a conjecture proposed by Li et al. Finally, we identify the θ 1 , p , q -free graph of size m having the largest spectral radius, where q p 3 and p + q 2 k + 1 . A further research problem is also proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信