求助PDF
{"title":"固定大小图的谱极值:禁止风扇图、友谊图或Theta图","authors":"Shuchao Li, Sishu Zhao, Lantao Zou","doi":"10.1002/jgt.23287","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> edges. This can be regarded as a spectral characterization of the existence of the subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> within <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. A significant contribution to this problem was made by Nikiforov (2002). He proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <msqrt>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </msqrt>\n </mrow>\n </mrow>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </mrow>\n </semantics></math>, respectively. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the fan graph, that is, the join of a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and a path <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> be the friendship graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> triangles by sharing a common vertex. In this paper, we utilize the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>9</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>6</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>5</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>46</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>4</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>56</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>196</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <msqrt>\n <mrow>\n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msqrt>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Equality holds if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>≅</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∨</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mi>m</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>−</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>9</mn>\n \n <mn>4</mn>\n </mfrac>\n \n <msup>\n <mi>k</mi>\n \n <mn>6</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>6</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>5</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>46</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>4</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>56</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>196</mn>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <msqrt>\n <mrow>\n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>k</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msqrt>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Equality holds if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>≅</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>∨</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mi>m</mi>\n \n <mi>k</mi>\n </mfrac>\n \n <mo>−</mo>\n \n <mfrac>\n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msub>\n <mi>K</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This confirms a conjecture proposed by Li et al. Finally, we identify the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n </semantics></math> having the largest spectral radius, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n \n <mo>⩾</mo>\n \n <mi>p</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>+</mo>\n \n <mi>q</mi>\n \n <mo>⩾</mo>\n \n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>. A further research problem is also proposed.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"483-495"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Extrema of Graphs With Fixed Size: Forbidden a Fan Graph, a Friendship Graph, or a Theta Graph\",\"authors\":\"Shuchao Li, Sishu Zhao, Lantao Zou\",\"doi\":\"10.1002/jgt.23287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>It is well-known that Brualdi-Hoffman-Turán-type problem inquiries about the maximum spectral radius <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> edges. This can be regarded as a spectral characterization of the existence of the subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> within <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. A significant contribution to this problem was made by Nikiforov (2002). He proved that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <msqrt>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>r</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msqrt>\\n </mrow>\\n </mrow>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> be the theta graph, which is obtained by connecting two vertices with three internally disjoint paths of lengths <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, respectively. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> be the fan graph, that is, the join of a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and a path <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> be the friendship graph obtained from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> triangles by sharing a common vertex. In this paper, we utilize the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-core method and spectral techniques to address some spectral extrema of graphs with fixed size. Firstly, we show that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>⩾</mo>\\n \\n <mfrac>\\n <mn>9</mn>\\n \\n <mn>4</mn>\\n </mfrac>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>6</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>6</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>5</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>46</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>4</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>56</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>196</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <msqrt>\\n <mrow>\\n <mn>4</mn>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msqrt>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>. Equality holds if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>≅</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∨</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </mfrac>\\n \\n <mo>−</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. This confirms a conjecture of Yu et al. and improves a recent result of Li et al. Secondly, we show that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>⩾</mo>\\n \\n <mfrac>\\n <mn>9</mn>\\n \\n <mn>4</mn>\\n </mfrac>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>6</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>6</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>5</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>46</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>4</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>56</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>196</mn>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <msqrt>\\n <mrow>\\n <mn>4</mn>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msqrt>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>. Equality holds if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>≅</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>∨</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mfrac>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </mfrac>\\n \\n <mo>−</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. This confirms a conjecture proposed by Li et al. Finally, we identify the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> having the largest spectral radius, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>q</mi>\\n \\n <mo>⩾</mo>\\n \\n <mi>p</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>+</mo>\\n \\n <mi>q</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>2</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. A further research problem is also proposed.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"483-495\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23287\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用