边色完全超图中彩虹部分F -平铺的紧界

IF 1 3区 数学 Q2 MATHEMATICS
Jinghua Deng, Jianfeng Hou, Xizhi Liu, Caihong Yang
{"title":"边色完全超图中彩虹部分F -平铺的紧界","authors":"Jinghua Deng,&nbsp;Jianfeng Hou,&nbsp;Xizhi Liu,&nbsp;Caihong Yang","doi":"10.1002/jgt.23282","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> and integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mi>v</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> denote the minimum integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> such that every edge-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>n</mi>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> using <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> colors contains a rainbow copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs consisting of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> vertex-disjoint copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>. The case <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> is the classical anti-Ramsey problem proposed by Erdős–Simonovits–Sós [1]. When <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is a single edge, this becomes the rainbow matching problem introduced by Schiermeyer [2] and Özkahya–Young [3]. We conduct a systematic study of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for the case when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is much smaller than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ex</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>/</mo>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. Our first main result provides a reduction of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is bounded and smooth, two properties satisfied by most previously studied hypergraphs. Complementing the first result, the second main result, which utilizes gaps between Turán numbers, determines <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for relatively smaller <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>. Together, these two results determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>ar</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mi>F</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for a large class of hypergraphs. Additionally, the latter result has the advantage of being applicable to hypergraphs with unknown Turán densities, such as the famous tetrahedron <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mn>4</mn>\n \n <mn>3</mn>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"457-467"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Bounds for Rainbow Partial \\n \\n \\n \\n F\\n \\n \\n -Tiling in Edge-Colored Complete Hypergraphs\",\"authors\":\"Jinghua Deng,&nbsp;Jianfeng Hou,&nbsp;Xizhi Liu,&nbsp;Caihong Yang\",\"doi\":\"10.1002/jgt.23282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and integers <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> satisfying <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≤</mo>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mi>v</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ar</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> denote the minimum integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that every edge-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n \\n <mi>r</mi>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> using <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> colors contains a rainbow copy of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graphs consisting of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertex-disjoint copies of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. The case <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> is the classical anti-Ramsey problem proposed by Erdős–Simonovits–Sós [1]. When <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a single edge, this becomes the rainbow matching problem introduced by Schiermeyer [2] and Özkahya–Young [3]. We conduct a systematic study of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ar</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for the case when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is much smaller than <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ex</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>/</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>. Our first main result provides a reduction of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ar</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ar</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is bounded and smooth, two properties satisfied by most previously studied hypergraphs. Complementing the first result, the second main result, which utilizes gaps between Turán numbers, determines <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ar</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for relatively smaller <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Together, these two results determine <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>ar</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n \\n <mi>F</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for a large class of hypergraphs. Additionally, the latter result has the advantage of being applicable to hypergraphs with unknown Turán densities, such as the famous tetrahedron <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n \\n <mn>3</mn>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 4\",\"pages\":\"457-467\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于r -图F和整数n,t满足t≤n / v (F),让ar (n)t (F)表示最小整数N,使得的每条边着色K n r使用n种颜色包含t的彩虹副本F ,t F是由t个顶点不相交的拷贝组成的r个图F .当t = 1时,是Erdős-Simonovits-Sós[1]提出的经典反拉姆齐问题。当F为单条边时,这就成为Schiermeyer[2]和Özkahya-Young[3]引入的彩虹匹配问题。 我们对ar (n)进行了系统研究,t (F)对于t远小于例(n);F) / n r−1。我们的第一个主要结果提供了ar (n)的减少,从F到n, 2 F),当F是有界光滑的,大多数先前研究过的超图都满足这两个性质。作为第一个结果的补充,第二个主要结果利用Turán数字之间的间隔确定了ar (n),t F)相对较小的t。这两个结果一起决定了ar (n)t F)对于一大类超图。此外,后一种结果具有适用于未知Turán密度的超图的优点,例如著名的四面体k43。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tight Bounds for Rainbow Partial 
         
            
               
                  F
               
            
         -Tiling in Edge-Colored Complete Hypergraphs

Tight Bounds for Rainbow Partial F -Tiling in Edge-Colored Complete Hypergraphs

For an r -graph F and integers n , t satisfying t n / v ( F ) , let ar ( n , t F ) denote the minimum integer N such that every edge-coloring of K n r using N colors contains a rainbow copy of t F , where t F is the r -graphs consisting of t vertex-disjoint copies of F . The case t = 1 is the classical anti-Ramsey problem proposed by Erdős–Simonovits–Sós [1]. When F is a single edge, this becomes the rainbow matching problem introduced by Schiermeyer [2] and Özkahya–Young [3]. We conduct a systematic study of ar ( n , t F ) for the case when t is much smaller than ex ( n , F ) / n r 1 . Our first main result provides a reduction of ar ( n , t F ) to ar ( n , 2 F ) when F is bounded and smooth, two properties satisfied by most previously studied hypergraphs. Complementing the first result, the second main result, which utilizes gaps between Turán numbers, determines ar ( n , t F ) for relatively smaller t . Together, these two results determine ar ( n , t F ) for a large class of hypergraphs. Additionally, the latter result has the advantage of being applicable to hypergraphs with unknown Turán densities, such as the famous tetrahedron K 4 3 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信