Stability of Rose Window graphs

Pub Date : 2024-08-05 DOI:10.1002/jgt.23162
Milad Ahanjideh, István Kovács, Klavdija Kutnar
{"title":"Stability of Rose Window graphs","authors":"Milad Ahanjideh,&nbsp;István Kovács,&nbsp;Klavdija Kutnar","doi":"10.1002/jgt.23162","DOIUrl":null,"url":null,"abstract":"<p>A graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Γ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> is said to be stable if for the direct product <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Γ</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mtext>Aut</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>Γ</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}\\times {{\\bf{K}}}_{2},\\text{Aut}({\\rm{\\Gamma }}\\times {{\\bf{K}}}_{2})$</annotation>\n </semantics></math> is isomorphic to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>Aut</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Γ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>×</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> $\\text{Aut}({\\rm{\\Gamma }})\\times {{\\mathbb{Z}}}_{2}$</annotation>\n </semantics></math>; otherwise, it is called unstable. An unstable graph is called nontrivially unstable when it is not bipartite and no two vertices have the same neighborhood. Wilson described nine families of unstable Rose Window graphs and conjectured that these contain all nontrivially unstable Rose Window graphs (2008). In this paper we show that the conjecture is true.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A graph Γ ${\rm{\Gamma }}$ is said to be stable if for the direct product Γ × K 2 , Aut ( Γ × K 2 ) ${\rm{\Gamma }}\times {{\bf{K}}}_{2},\text{Aut}({\rm{\Gamma }}\times {{\bf{K}}}_{2})$ is isomorphic to Aut ( Γ ) × Z 2 $\text{Aut}({\rm{\Gamma }})\times {{\mathbb{Z}}}_{2}$ ; otherwise, it is called unstable. An unstable graph is called nontrivially unstable when it is not bipartite and no two vertices have the same neighborhood. Wilson described nine families of unstable Rose Window graphs and conjectured that these contain all nontrivially unstable Rose Window graphs (2008). In this paper we show that the conjecture is true.

分享
查看原文
玫瑰窗图形的稳定性
如果图的直积与图同构,则称该图为稳定图;反之,则称该图为不稳定图。如果一个不稳定图不是两部分的,且没有两个顶点具有相同的邻域,则称为非两部分不稳定图。Wilson 描述了九个不稳定玫瑰窗图族,并猜想这些族包含所有非难不稳定玫瑰窗图(2008 年)。在本文中,我们证明了猜想的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信