{"title":"Counting triangles in regular graphs","authors":"Jialin He, Xinmin Hou, Jie Ma, Tianying Xie","doi":"10.1002/jgt.23156","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math>, in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-regular graphs, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is an odd integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $t(n,k)\\gt 0$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $k\\gt \\frac{2n}{5}$</annotation>\n </semantics></math>. In a striking work, Lo has provided the exact value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, given that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mrow>\n <mn>12</mn>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo><</mo>\n \n <mi>k</mi>\n \n <mo><</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}+\\frac{12\\sqrt{n}}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. Here, we bridge the gap between the aforementioned results by determining the precise value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> in the entire range <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo><</mo>\n \n <mi>k</mi>\n \n <mo><</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"759-777"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23156","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the minimum number of triangles, denoted by , in -vertex -regular graphs, where is an odd integer and is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that if . In a striking work, Lo has provided the exact value of for sufficiently large , given that . Here, we bridge the gap between the aforementioned results by determining the precise value of in the entire range . This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .