Counting triangles in regular graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
Jialin He, Xinmin Hou, Jie Ma, Tianying Xie
{"title":"Counting triangles in regular graphs","authors":"Jialin He,&nbsp;Xinmin Hou,&nbsp;Jie Ma,&nbsp;Tianying Xie","doi":"10.1002/jgt.23156","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math>, in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-regular graphs, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is an odd integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $t(n,k)\\gt 0$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>&gt;</mo>\n \n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $k\\gt \\frac{2n}{5}$</annotation>\n </semantics></math>. In a striking work, Lo has provided the exact value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, given that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mrow>\n <mn>12</mn>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n \n <mo>&lt;</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}+\\frac{12\\sqrt{n}}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. Here, we bridge the gap between the aforementioned results by determining the precise value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> in the entire range <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n \n <mo>&lt;</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"759-777"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23156","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the minimum number of triangles, denoted by t ( n , k ) $t(n,k)$ , in n $n$ -vertex k $k$ -regular graphs, where n $n$ is an odd integer and k $k$ is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that t ( n , k ) > 0 $t(n,k)\gt 0$ if k > 2 n 5 $k\gt \frac{2n}{5}$ . In a striking work, Lo has provided the exact value of t ( n , k ) $t(n,k)$ for sufficiently large n $n$ , given that 2 n 5 + 12 n 5 < k < n 2 $\frac{2n}{5}+\frac{12\sqrt{n}}{5}\lt k\lt \frac{n}{2}$ . Here, we bridge the gap between the aforementioned results by determining the precise value of t ( n , k ) $t(n,k)$ in the entire range 2 n 5 < k < n 2 $\frac{2n}{5}\lt k\lt \frac{n}{2}$ . This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large n $n$ .

计算规则图形中的三角形
在本文中,我们将研究有顶点不规则图形中三角形的最小数量,用 表示,其中 为奇数整数, 为偶数整数。著名的 Andrásfai-Erdős-Sós 定理证明,如果 .在一项引人注目的工作中,Lo 提供了足够大的 , 的精确值,即 .在这里,我们通过确定整个范围内 的精确值,弥补了上述结果之间的差距。这证实了康比、德-乔尼斯-德-韦尔克洛斯和康对足够大的 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信