具有彩虹 C4 ${C}_{4}$-s 的平面图的适当边着色

IF 0.9 3区 数学 Q2 MATHEMATICS
András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy
{"title":"具有彩虹 C4 ${C}_{4}$-s 的平面图的适当边着色","authors":"András Gyárfás,&nbsp;Ryan R. Martin,&nbsp;Miklós Ruszinkó,&nbsp;Gábor N. Sárközy","doi":"10.1002/jgt.23163","DOIUrl":null,"url":null,"abstract":"<p>We call a proper edge coloring of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is colored with four different colors. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}={\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}+8$</annotation>\n </semantics></math> for planar graphs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}$</annotation>\n </semantics></math> for bipartite planar graphs, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}+1$</annotation>\n </semantics></math> for outerplanar graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 4$</annotation>\n </semantics></math>. We conjecture that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math> sufficiently large, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for planar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for outerplanar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"833-846"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper edge colorings of planar graphs with rainbow \\n \\n \\n \\n \\n C\\n 4\\n \\n \\n \\n ${C}_{4}$\\n -s\",\"authors\":\"András Gyárfás,&nbsp;Ryan R. Martin,&nbsp;Miklós Ruszinkó,&nbsp;Gábor N. Sárközy\",\"doi\":\"10.1002/jgt.23163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We call a proper edge coloring of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is colored with four different colors. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)$</annotation>\\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)$</annotation>\\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>=</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}={\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}+8$</annotation>\\n </semantics></math> for planar graphs, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> for bipartite planar graphs, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le {\\\\rm{\\\\Delta }}+1$</annotation>\\n </semantics></math> for outerplanar graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 4$</annotation>\\n </semantics></math>. We conjecture that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> sufficiently large, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> for planar <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le {\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> for outerplanar <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 4\",\"pages\":\"833-846\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果图的每个 4 循环都用四种不同的颜色着色,我们就称该图的适当边着色为 B 着色。让表示 B 染色所需的最小颜色数。 受早先关于 B 染色的论文的启发,我们在此考虑平面图和外平面图的最大度。我们证明,对于平面图、双方形平面图以及具有 .我们猜想,在足够大的情况下,对于平面图 , 和外平面图 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proper edge colorings of planar graphs with rainbow C 4 ${C}_{4}$ -s

We call a proper edge coloring of a graph G $G$ a B-coloring if every 4-cycle of G $G$ is colored with four different colors. Let q B ( G ) ${q}_{B}(G)$ denote the smallest number of colors needed for a B-coloring of G $G$ . Motivated by earlier papers on B-colorings, here we consider q B ( G ) ${q}_{B}(G)$ for planar and outerplanar graphs in terms of the maximum degree Δ = Δ ( G ) ${\rm{\Delta }}={\rm{\Delta }}(G)$ . We prove that q B ( G ) 2 Δ + 8 ${q}_{B}(G)\le 2{\rm{\Delta }}+8$ for planar graphs, q B ( G ) 2 Δ ${q}_{B}(G)\le 2{\rm{\Delta }}$ for bipartite planar graphs, and q B ( G ) Δ + 1 ${q}_{B}(G)\le {\rm{\Delta }}+1$ for outerplanar graphs with Δ 4 ${\rm{\Delta }}\ge 4$ . We conjecture that, for Δ ${\rm{\Delta }}$ sufficiently large, q B ( G ) 2 Δ ( G ) ${q}_{B}(G)\le 2{\rm{\Delta }}(G)$ for planar G $G$ , and q B ( G ) Δ ( G ) ${q}_{B}(G)\le {\rm{\Delta }}(G)$ for outerplanar G $G$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信