具有彩虹 C4 ${C}_{4}$-s 的平面图的适当边着色

Pub Date : 2024-08-05 DOI:10.1002/jgt.23163
András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy
{"title":"具有彩虹 C4 ${C}_{4}$-s 的平面图的适当边着色","authors":"András Gyárfás,&nbsp;Ryan R. Martin,&nbsp;Miklós Ruszinkó,&nbsp;Gábor N. Sárközy","doi":"10.1002/jgt.23163","DOIUrl":null,"url":null,"abstract":"<p>We call a proper edge coloring of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is colored with four different colors. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}={\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}+8$</annotation>\n </semantics></math> for planar graphs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}$</annotation>\n </semantics></math> for bipartite planar graphs, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}+1$</annotation>\n </semantics></math> for outerplanar graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 4$</annotation>\n </semantics></math>. We conjecture that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math> sufficiently large, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for planar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for outerplanar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper edge colorings of planar graphs with rainbow \\n \\n \\n \\n \\n C\\n 4\\n \\n \\n \\n ${C}_{4}$\\n -s\",\"authors\":\"András Gyárfás,&nbsp;Ryan R. Martin,&nbsp;Miklós Ruszinkó,&nbsp;Gábor N. Sárközy\",\"doi\":\"10.1002/jgt.23163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We call a proper edge coloring of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is colored with four different colors. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)$</annotation>\\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)$</annotation>\\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>=</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}={\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}+8$</annotation>\\n </semantics></math> for planar graphs, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> for bipartite planar graphs, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le {\\\\rm{\\\\Delta }}+1$</annotation>\\n </semantics></math> for outerplanar graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 4$</annotation>\\n </semantics></math>. We conjecture that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> sufficiently large, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> for planar <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le {\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> for outerplanar <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果图的每个 4 循环都用四种不同的颜色着色,我们就称该图的适当边着色为 B 着色。让表示 B 染色所需的最小颜色数。 受早先关于 B 染色的论文的启发,我们在此考虑平面图和外平面图的最大度。我们证明,对于平面图、双方形平面图以及具有 .我们猜想,在足够大的情况下,对于平面图 , 和外平面图 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Proper edge colorings of planar graphs with rainbow C 4 ${C}_{4}$ -s

We call a proper edge coloring of a graph G $G$ a B-coloring if every 4-cycle of G $G$ is colored with four different colors. Let q B ( G ) ${q}_{B}(G)$ denote the smallest number of colors needed for a B-coloring of G $G$ . Motivated by earlier papers on B-colorings, here we consider q B ( G ) ${q}_{B}(G)$ for planar and outerplanar graphs in terms of the maximum degree Δ = Δ ( G ) ${\rm{\Delta }}={\rm{\Delta }}(G)$ . We prove that q B ( G ) 2 Δ + 8 ${q}_{B}(G)\le 2{\rm{\Delta }}+8$ for planar graphs, q B ( G ) 2 Δ ${q}_{B}(G)\le 2{\rm{\Delta }}$ for bipartite planar graphs, and q B ( G ) Δ + 1 ${q}_{B}(G)\le {\rm{\Delta }}+1$ for outerplanar graphs with Δ 4 ${\rm{\Delta }}\ge 4$ . We conjecture that, for Δ ${\rm{\Delta }}$ sufficiently large, q B ( G ) 2 Δ ( G ) ${q}_{B}(G)\le 2{\rm{\Delta }}(G)$ for planar G $G$ , and q B ( G ) Δ ( G ) ${q}_{B}(G)\le {\rm{\Delta }}(G)$ for outerplanar G $G$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信