András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy
求助PDF
{"title":"具有彩虹 C4 ${C}_{4}$-s 的平面图的适当边着色","authors":"András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy","doi":"10.1002/jgt.23163","DOIUrl":null,"url":null,"abstract":"<p>We call a proper edge coloring of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is colored with four different colors. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}={\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}+8$</annotation>\n </semantics></math> for planar graphs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}$</annotation>\n </semantics></math> for bipartite planar graphs, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}+1$</annotation>\n </semantics></math> for outerplanar graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 4$</annotation>\n </semantics></math>. We conjecture that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math> sufficiently large, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for planar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for outerplanar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"833-846"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper edge colorings of planar graphs with rainbow \\n \\n \\n \\n \\n C\\n 4\\n \\n \\n \\n ${C}_{4}$\\n -s\",\"authors\":\"András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy\",\"doi\":\"10.1002/jgt.23163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We call a proper edge coloring of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is colored with four different colors. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)$</annotation>\\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)$</annotation>\\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>=</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}={\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}+8$</annotation>\\n </semantics></math> for planar graphs, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> for bipartite planar graphs, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le {\\\\rm{\\\\Delta }}+1$</annotation>\\n </semantics></math> for outerplanar graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 4$</annotation>\\n </semantics></math>. We conjecture that, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> sufficiently large, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le 2{\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> for planar <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>q</mi>\\n \\n <mi>B</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${q}_{B}(G)\\\\le {\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> for outerplanar <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 4\",\"pages\":\"833-846\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用