Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud
{"title":"On the minimum number of arcs in 4-dicritical oriented graphs","authors":"Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud","doi":"10.1002/jgt.23159","DOIUrl":null,"url":null,"abstract":"<p>The dichromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)$</annotation>\n </semantics></math> of a digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)=k$</annotation>\n </semantics></math> and each proper subdigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(H)\\lt k$</annotation>\n </semantics></math>. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, we define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${d}_{k}(n)$</annotation>\n </semantics></math> (resp., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)$</annotation>\n </semantics></math>) as the minimum number of arcs possible in a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${d}_{4}(n)\\geqslant \\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math>. They also conjectured that there is a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mi>c</mi>\n \n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)\\geqslant c{d}_{k}(n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\geqslant 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> large enough. This conjecture is known to be true for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k=3$</annotation>\n </semantics></math>. In this work, we prove that every 4-dicritical oriented graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>51</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $(\\frac{10}{3}+\\frac{1}{51})n-1$</annotation>\n </semantics></math> arcs, showing the conjecture for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $k=4$</annotation>\n </semantics></math>. We also characterise exactly the 4-dicritical digraphs on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices with exactly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math> arcs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"778-809"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23159","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dichromatic number of a digraph is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph is -dicritical if and each proper subdigraph of satisfies . For integers and , we define (resp., ) as the minimum number of arcs possible in a -dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that . They also conjectured that there is a constant such that for and large enough. This conjecture is known to be true for . In this work, we prove that every 4-dicritical oriented graph on vertices has at least arcs, showing the conjecture for . We also characterise exactly the 4-dicritical digraphs on vertices with exactly arcs.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .