On the minimum number of arcs in 4-dicritical oriented graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud
{"title":"On the minimum number of arcs in 4-dicritical oriented graphs","authors":"Frédéric Havet,&nbsp;Lucas Picasarri-Arrieta,&nbsp;Clément Rambaud","doi":"10.1002/jgt.23159","DOIUrl":null,"url":null,"abstract":"<p>The dichromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)$</annotation>\n </semantics></math> of a digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)=k$</annotation>\n </semantics></math> and each proper subdigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(H)\\lt k$</annotation>\n </semantics></math>. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, we define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${d}_{k}(n)$</annotation>\n </semantics></math> (resp., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)$</annotation>\n </semantics></math>) as the minimum number of arcs possible in a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${d}_{4}(n)\\geqslant \\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math>. They also conjectured that there is a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mi>c</mi>\n \n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)\\geqslant c{d}_{k}(n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\geqslant 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> large enough. This conjecture is known to be true for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k=3$</annotation>\n </semantics></math>. In this work, we prove that every 4-dicritical oriented graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>51</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $(\\frac{10}{3}+\\frac{1}{51})n-1$</annotation>\n </semantics></math> arcs, showing the conjecture for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $k=4$</annotation>\n </semantics></math>. We also characterise exactly the 4-dicritical digraphs on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices with exactly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math> arcs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"778-809"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23159","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dichromatic number χ ( D ) $\overrightarrow{\chi }(D)$ of a digraph D $D$ is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph D $D$ is k $k$ -dicritical if χ ( D ) = k $\overrightarrow{\chi }(D)=k$ and each proper subdigraph H $H$ of D $D$ satisfies χ ( H ) < k $\overrightarrow{\chi }(H)\lt k$ . For integers k $k$ and n $n$ , we define d k ( n ) ${d}_{k}(n)$ (resp., o k ( n ) ${o}_{k}(n)$ ) as the minimum number of arcs possible in a k $k$ -dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that d 4 ( n ) 10 3 n 4 3 ${d}_{4}(n)\geqslant \frac{10}{3}n-\frac{4}{3}$ . They also conjectured that there is a constant c $c$ such that o k ( n ) c d k ( n ) ${o}_{k}(n)\geqslant c{d}_{k}(n)$ for k 3 $k\geqslant 3$ and n $n$ large enough. This conjecture is known to be true for k = 3 $k=3$ . In this work, we prove that every 4-dicritical oriented graph on n $n$ vertices has at least ( 10 3 + 1 51 ) n 1 $(\frac{10}{3}+\frac{1}{51})n-1$ arcs, showing the conjecture for k = 4 $k=4$ . We also characterise exactly the 4-dicritical digraphs on n $n$ vertices with exactly 10 3 n 4 3 $\frac{10}{3}n-\frac{4}{3}$ arcs.

论四临界定向图中的最小弧数
数图的二色数是指为数图顶点着色所需的最少颜色数,使得每个颜色类都能诱导出一个无环子数图。如果且 的每个适当的子图均满足 ,则一个数图是无色的。对于整数 和 ,我们定义(respect.科斯托奇卡和斯蒂比茨证明了 。他们还猜想存在一个常数,对于 和 足够大。众所周知,这一猜想对于 .在本研究中,我们证明了每一个顶点上的 4-临界定向图都至少有弧,从而证明了对 ...的猜想。我们还精确地描述了顶点上具有精确弧的 4-dicritical 数字图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信