Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud
{"title":"On the minimum number of arcs in 4-dicritical oriented graphs","authors":"Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud","doi":"10.1002/jgt.23159","DOIUrl":null,"url":null,"abstract":"<p>The dichromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)$</annotation>\n </semantics></math> of a digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)=k$</annotation>\n </semantics></math> and each proper subdigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(H)\\lt k$</annotation>\n </semantics></math>. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, we define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${d}_{k}(n)$</annotation>\n </semantics></math> (resp., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)$</annotation>\n </semantics></math>) as the minimum number of arcs possible in a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${d}_{4}(n)\\geqslant \\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math>. They also conjectured that there is a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mi>c</mi>\n \n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)\\geqslant c{d}_{k}(n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\geqslant 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> large enough. This conjecture is known to be true for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k=3$</annotation>\n </semantics></math>. In this work, we prove that every 4-dicritical oriented graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>51</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $(\\frac{10}{3}+\\frac{1}{51})n-1$</annotation>\n </semantics></math> arcs, showing the conjecture for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $k=4$</annotation>\n </semantics></math>. We also characterise exactly the 4-dicritical digraphs on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices with exactly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math> arcs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dichromatic number of a digraph is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph is -dicritical if and each proper subdigraph of satisfies . For integers and , we define (resp., ) as the minimum number of arcs possible in a -dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that . They also conjectured that there is a constant such that for and large enough. This conjecture is known to be true for . In this work, we prove that every 4-dicritical oriented graph on vertices has at least arcs, showing the conjecture for . We also characterise exactly the 4-dicritical digraphs on vertices with exactly arcs.