On the minimum number of arcs in 4-dicritical oriented graphs

Pub Date : 2024-07-29 DOI:10.1002/jgt.23159
Frédéric Havet, Lucas Picasarri-Arrieta, Clément Rambaud
{"title":"On the minimum number of arcs in 4-dicritical oriented graphs","authors":"Frédéric Havet,&nbsp;Lucas Picasarri-Arrieta,&nbsp;Clément Rambaud","doi":"10.1002/jgt.23159","DOIUrl":null,"url":null,"abstract":"<p>The dichromatic number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)$</annotation>\n </semantics></math> of a digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(D)=k$</annotation>\n </semantics></math> and each proper subdigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>χ</mi>\n \n <mo>→</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\overrightarrow{\\chi }(H)\\lt k$</annotation>\n </semantics></math>. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, we define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${d}_{k}(n)$</annotation>\n </semantics></math> (resp., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)$</annotation>\n </semantics></math>) as the minimum number of arcs possible in a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${d}_{4}(n)\\geqslant \\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math>. They also conjectured that there is a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>o</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩾</mo>\n \n <mi>c</mi>\n \n <msub>\n <mi>d</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${o}_{k}(n)\\geqslant c{d}_{k}(n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>⩾</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\geqslant 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> large enough. This conjecture is known to be true for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k=3$</annotation>\n </semantics></math>. In this work, we prove that every 4-dicritical oriented graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>51</mn>\n </mfrac>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $(\\frac{10}{3}+\\frac{1}{51})n-1$</annotation>\n </semantics></math> arcs, showing the conjecture for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> $k=4$</annotation>\n </semantics></math>. We also characterise exactly the 4-dicritical digraphs on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices with exactly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>10</mn>\n \n <mn>3</mn>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mn>3</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{10}{3}n-\\frac{4}{3}$</annotation>\n </semantics></math> arcs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dichromatic number χ ( D ) $\overrightarrow{\chi }(D)$ of a digraph D $D$ is the minimum number of colours needed to colour the vertices of a digraph such that each colour class induces an acyclic subdigraph. A digraph D $D$ is k $k$ -dicritical if χ ( D ) = k $\overrightarrow{\chi }(D)=k$ and each proper subdigraph H $H$ of D $D$ satisfies χ ( H ) < k $\overrightarrow{\chi }(H)\lt k$ . For integers k $k$ and n $n$ , we define d k ( n ) ${d}_{k}(n)$ (resp., o k ( n ) ${o}_{k}(n)$ ) as the minimum number of arcs possible in a k $k$ -dicritical digraph (resp., oriented graph). Kostochka and Stiebitz have shown that d 4 ( n ) 10 3 n 4 3 ${d}_{4}(n)\geqslant \frac{10}{3}n-\frac{4}{3}$ . They also conjectured that there is a constant c $c$ such that o k ( n ) c d k ( n ) ${o}_{k}(n)\geqslant c{d}_{k}(n)$ for k 3 $k\geqslant 3$ and n $n$ large enough. This conjecture is known to be true for k = 3 $k=3$ . In this work, we prove that every 4-dicritical oriented graph on n $n$ vertices has at least ( 10 3 + 1 51 ) n 1 $(\frac{10}{3}+\frac{1}{51})n-1$ arcs, showing the conjecture for k = 4 $k=4$ . We also characterise exactly the 4-dicritical digraphs on n $n$ vertices with exactly 10 3 n 4 3 $\frac{10}{3}n-\frac{4}{3}$ arcs.

分享
查看原文
论四临界定向图中的最小弧数
数图的二色数是指为数图顶点着色所需的最少颜色数,使得每个颜色类都能诱导出一个无环子数图。如果且 的每个适当的子图均满足 ,则一个数图是无色的。对于整数 和 ,我们定义(respect.科斯托奇卡和斯蒂比茨证明了 。他们还猜想存在一个常数,对于 和 足够大。众所周知,这一猜想对于 .在本研究中,我们证明了每一个顶点上的 4-临界定向图都至少有弧,从而证明了对 ...的猜想。我们还精确地描述了顶点上具有精确弧的 4-dicritical 数字图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信