求助PDF
{"title":"3连通无爪平面图和4连通无4周期平面图中的周期","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":null,"url":null,"abstract":"<p>The cycle spectrum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{CS}}(G)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the set of the cycle lengths in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{G}}$</annotation>\n </semantics></math> be a graph class. For any integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>, define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{G}}}(k)$</annotation>\n </semantics></math> to be the least integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> ${k}^{^{\\prime} }\\ge k$</annotation>\n </semantics></math> such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G\\in {\\mathscr{G}}$</annotation>\n </semantics></math> with circumference at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <mi>∅</mi>\n </mrow>\n </mrow>\n <annotation> $k,{\\mathscr{CS}}(G)\\cap [k,{k}^{^{\\prime} }]\\ne \\varnothing $</annotation>\n </semantics></math>. Denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n \n <mo>,</mo>\n \n <mi>P</mi>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>PC</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{P}},{\\mathscr{P}}3,{\\mathscr{PC}}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{PC}}3$</annotation>\n </semantics></math> the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>P</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}3}(k)$</annotation>\n </semantics></math> were known for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the first part of this article, we prove the claw-free version of these results by giving the values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>PC</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}3}(k)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has all cycle lengths from 3 to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> $| V(G)| $</annotation>\n </semantics></math> except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> without 4-cycles has all cycle lengths other than 4. It was already known that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mn>9</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>7</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{3,5,\\ldots ,9\\}\\cup \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,\\lceil | V(G)| \\unicode{x02215}2\\rceil +3\\}\\cup \\{| V(G)| -7,\\ldots ,| V(G)| \\}\\subseteq {\\mathscr{CS}}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> can be embedded in the plane such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $k\\in \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,| V(G)| \\},G$</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-cycle <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> and all vertices not in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> lie in the exterior of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"702-728"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles\",\"authors\":\"On-Hei Solomon Lo\",\"doi\":\"10.1002/jgt.23152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cycle spectrum <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>CS</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{CS}}(G)$</annotation>\\n </semantics></math> of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is the set of the cycle lengths in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{G}}$</annotation>\\n </semantics></math> be a graph class. For any integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math>, define <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{G}}}(k)$</annotation>\\n </semantics></math> to be the least integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>k</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>≥</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${k}^{^{\\\\prime} }\\\\ge k$</annotation>\\n </semantics></math> such that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G\\\\in {\\\\mathscr{G}}$</annotation>\\n </semantics></math> with circumference at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>CS</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∩</mo>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n \\n <mo>≠</mo>\\n \\n <mi>∅</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k,{\\\\mathscr{CS}}(G)\\\\cap [k,{k}^{^{\\\\prime} }]\\\\ne \\\\varnothing $</annotation>\\n </semantics></math>. Denote by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>P</mi>\\n \\n <mo>,</mo>\\n \\n <mi>P</mi>\\n \\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mi>PC</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}},{\\\\mathscr{P}}3,{\\\\mathscr{PC}}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>PC</mi>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{PC}}3$</annotation>\\n </semantics></math> the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>P</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{P}}}(k)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mrow>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{P}}3}(k)$</annotation>\\n </semantics></math> were known for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math>. In the first part of this article, we prove the claw-free version of these results by giving the values of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>PC</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{PC}}}(k)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mrow>\\n <mi>PC</mi>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{PC}}3}(k)$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math>. In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has all cycle lengths from 3 to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| V(G)| $</annotation>\\n </semantics></math> except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> without 4-cycles has all cycle lengths other than 4. It was already known that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mn>9</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∪</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>⌊</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌋</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∪</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>−</mo>\\n \\n <mn>7</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>⊆</mo>\\n \\n <mi>CS</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{3,5,\\\\ldots ,9\\\\}\\\\cup \\\\{\\\\lfloor | V(G)| \\\\unicode{x02215}2\\\\rfloor ,\\\\ldots ,\\\\lceil | V(G)| \\\\unicode{x02215}2\\\\rceil +3\\\\}\\\\cup \\\\{| V(G)| -7,\\\\ldots ,| V(G)| \\\\}\\\\subseteq {\\\\mathscr{CS}}(G)$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> can be embedded in the plane such that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>⌊</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌋</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\in \\\\{\\\\lfloor | V(G)| \\\\unicode{x02215}2\\\\rfloor ,\\\\ldots ,| V(G)| \\\\},G$</annotation>\\n </semantics></math> has a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-cycle <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math> and all vertices not in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math> lie in the exterior of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 4\",\"pages\":\"702-728\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23152\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23152","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用