3连通无爪平面图和4连通无4周期平面图中的周期

Pub Date : 2024-07-21 DOI:10.1002/jgt.23152
On-Hei Solomon Lo
{"title":"3连通无爪平面图和4连通无4周期平面图中的周期","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":null,"url":null,"abstract":"<p>The cycle spectrum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{CS}}(G)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the set of the cycle lengths in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{G}}$</annotation>\n </semantics></math> be a graph class. For any integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>, define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{G}}}(k)$</annotation>\n </semantics></math> to be the least integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> ${k}^{^{\\prime} }\\ge k$</annotation>\n </semantics></math> such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G\\in {\\mathscr{G}}$</annotation>\n </semantics></math> with circumference at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <mi>∅</mi>\n </mrow>\n </mrow>\n <annotation> $k,{\\mathscr{CS}}(G)\\cap [k,{k}^{^{\\prime} }]\\ne \\varnothing $</annotation>\n </semantics></math>. Denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n \n <mo>,</mo>\n \n <mi>P</mi>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>PC</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{P}},{\\mathscr{P}}3,{\\mathscr{PC}}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{PC}}3$</annotation>\n </semantics></math> the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>P</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}3}(k)$</annotation>\n </semantics></math> were known for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the first part of this article, we prove the claw-free version of these results by giving the values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>PC</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}3}(k)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has all cycle lengths from 3 to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> $| V(G)| $</annotation>\n </semantics></math> except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> without 4-cycles has all cycle lengths other than 4. It was already known that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mn>9</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>7</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{3,5,\\ldots ,9\\}\\cup \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,\\lceil | V(G)| \\unicode{x02215}2\\rceil +3\\}\\cup \\{| V(G)| -7,\\ldots ,| V(G)| \\}\\subseteq {\\mathscr{CS}}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> can be embedded in the plane such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $k\\in \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,| V(G)| \\},G$</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-cycle <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> and all vertices not in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> lie in the exterior of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles\",\"authors\":\"On-Hei Solomon Lo\",\"doi\":\"10.1002/jgt.23152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cycle spectrum <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>CS</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{CS}}(G)$</annotation>\\n </semantics></math> of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is the set of the cycle lengths in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{G}}$</annotation>\\n </semantics></math> be a graph class. For any integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math>, define <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{G}}}(k)$</annotation>\\n </semantics></math> to be the least integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>k</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>≥</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${k}^{^{\\\\prime} }\\\\ge k$</annotation>\\n </semantics></math> such that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G\\\\in {\\\\mathscr{G}}$</annotation>\\n </semantics></math> with circumference at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>CS</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∩</mo>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n \\n <mo>≠</mo>\\n \\n <mi>∅</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k,{\\\\mathscr{CS}}(G)\\\\cap [k,{k}^{^{\\\\prime} }]\\\\ne \\\\varnothing $</annotation>\\n </semantics></math>. Denote by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>P</mi>\\n \\n <mo>,</mo>\\n \\n <mi>P</mi>\\n \\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mi>PC</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}},{\\\\mathscr{P}}3,{\\\\mathscr{PC}}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>PC</mi>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{PC}}3$</annotation>\\n </semantics></math> the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>P</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{P}}}(k)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mrow>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{P}}3}(k)$</annotation>\\n </semantics></math> were known for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math>. In the first part of this article, we prove the claw-free version of these results by giving the values of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>PC</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{PC}}}(k)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mrow>\\n <mi>PC</mi>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{{\\\\mathscr{PC}}3}(k)$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\ge 3$</annotation>\\n </semantics></math>. In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has all cycle lengths from 3 to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| V(G)| $</annotation>\\n </semantics></math> except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> without 4-cycles has all cycle lengths other than 4. It was already known that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mn>9</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∪</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>⌊</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌋</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>⌈</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∪</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>−</mo>\\n \\n <mn>7</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>⊆</mo>\\n \\n <mi>CS</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{3,5,\\\\ldots ,9\\\\}\\\\cup \\\\{\\\\lfloor | V(G)| \\\\unicode{x02215}2\\\\rfloor ,\\\\ldots ,\\\\lceil | V(G)| \\\\unicode{x02215}2\\\\rceil +3\\\\}\\\\cup \\\\{| V(G)| -7,\\\\ldots ,| V(G)| \\\\}\\\\subseteq {\\\\mathscr{CS}}(G)$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> can be embedded in the plane such that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>⌊</mo>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>⌋</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\in \\\\{\\\\lfloor | V(G)| \\\\unicode{x02215}2\\\\rfloor ,\\\\ldots ,| V(G)| \\\\},G$</annotation>\\n </semantics></math> has a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-cycle <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math> and all vertices not in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math> lie in the exterior of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图的循环谱是图中循环长度的集合。设为一个图类。对于任意整数 , 定义为最小整数,使得对于任意周长至少为 .用 、 和 分别表示 3 连接平面图形类、3 连接立方平面图形类、3 连接无爪平面图形类和 3 连接无爪立方平面图形类。所有......的和值都是已知的。在本文的第一部分,我们通过给出 和 的值,证明了这些结果的无爪版本。在第二部分中,我们将研究无 4 循环的 4 连接平面图的循环谱。邦迪猜想每个 4 连接平面图都有从 3 到的所有循环长度,只有一个偶数长度除外。这一猜想的真实性意味着每个不含 4 循环的 4 连接平面图都具有 4 以外的所有循环长度。我们证明了可以嵌入平面图中,使得对于任意有一个循环且所有不在循环中的顶点都位于 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles

The cycle spectrum CS ( G ) ${\mathscr{CS}}(G)$ of a graph G $G$ is the set of the cycle lengths in G $G$ . Let G ${\mathscr{G}}$ be a graph class. For any integer k 3 $k\ge 3$ , define f G ( k ) ${f}_{{\mathscr{G}}}(k)$ to be the least integer k k ${k}^{^{\prime} }\ge k$ such that for any G G $G\in {\mathscr{G}}$ with circumference at least k , CS ( G ) [ k , k ] $k,{\mathscr{CS}}(G)\cap [k,{k}^{^{\prime} }]\ne \varnothing $ . Denote by P , P 3 , PC ${\mathscr{P}},{\mathscr{P}}3,{\mathscr{PC}}$ , and PC 3 ${\mathscr{PC}}3$ the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of f P ( k ) ${f}_{{\mathscr{P}}}(k)$ and f P 3 ( k ) ${f}_{{\mathscr{P}}3}(k)$ were known for all k 3 $k\ge 3$ . In the first part of this article, we prove the claw-free version of these results by giving the values of f PC ( k ) ${f}_{{\mathscr{PC}}}(k)$ and f PC 3 ( k ) ${f}_{{\mathscr{PC}}3}(k)$ for all k 3 $k\ge 3$ . In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph G $G$ has all cycle lengths from 3 to V ( G ) $| V(G)| $ except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph G $G$ without 4-cycles has all cycle lengths other than 4. It was already known that { 3 , 5 , , 9 } { V ( G ) 2 , , V ( G ) 2 + 3 } { V ( G ) 7 , , V ( G ) } CS ( G ) $\{3,5,\ldots ,9\}\cup \{\lfloor | V(G)| \unicode{x02215}2\rfloor ,\ldots ,\lceil | V(G)| \unicode{x02215}2\rceil +3\}\cup \{| V(G)| -7,\ldots ,| V(G)| \}\subseteq {\mathscr{CS}}(G)$ . We prove that G $G$ can be embedded in the plane such that for any k { V ( G ) 2 , , V ( G ) } , G $k\in \{\lfloor | V(G)| \unicode{x02215}2\rfloor ,\ldots ,| V(G)| \},G$ has a k $k$ -cycle C $C$ and all vertices not in C $C$ lie in the exterior of C $C$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信