András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy
{"title":"Proper edge colorings of planar graphs with rainbow \n \n \n \n \n C\n 4\n \n \n \n ${C}_{4}$\n -s","authors":"András Gyárfás, Ryan R. Martin, Miklós Ruszinkó, Gábor N. Sárközy","doi":"10.1002/jgt.23163","DOIUrl":null,"url":null,"abstract":"<p>We call a proper edge coloring of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> a B-coloring if every 4-cycle of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is colored with four different colors. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> denote the smallest number of colors needed for a B-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Motivated by earlier papers on B-colorings, here we consider <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)$</annotation>\n </semantics></math> for planar and outerplanar graphs in terms of the maximum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>=</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}={\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>8</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}+8$</annotation>\n </semantics></math> for planar graphs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}$</annotation>\n </semantics></math> for bipartite planar graphs, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}+1$</annotation>\n </semantics></math> for outerplanar graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 4$</annotation>\n </semantics></math>. We conjecture that, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math> sufficiently large, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le 2{\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for planar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>q</mi>\n \n <mi>B</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${q}_{B}(G)\\le {\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> for outerplanar <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"833-846"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23163","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We call a proper edge coloring of a graph a B-coloring if every 4-cycle of is colored with four different colors. Let denote the smallest number of colors needed for a B-coloring of . Motivated by earlier papers on B-colorings, here we consider for planar and outerplanar graphs in terms of the maximum degree . We prove that for planar graphs, for bipartite planar graphs, and for outerplanar graphs with . We conjecture that, for sufficiently large, for planar , and for outerplanar .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .