{"title":"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":null,"url":null,"abstract":"<p>The cycle spectrum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{CS}}(G)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the set of the cycle lengths in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{G}}$</annotation>\n </semantics></math> be a graph class. For any integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>, define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{G}}}(k)$</annotation>\n </semantics></math> to be the least integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> ${k}^{^{\\prime} }\\ge k$</annotation>\n </semantics></math> such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G\\in {\\mathscr{G}}$</annotation>\n </semantics></math> with circumference at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <mi>∅</mi>\n </mrow>\n </mrow>\n <annotation> $k,{\\mathscr{CS}}(G)\\cap [k,{k}^{^{\\prime} }]\\ne \\varnothing $</annotation>\n </semantics></math>. Denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n \n <mo>,</mo>\n \n <mi>P</mi>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>PC</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{P}},{\\mathscr{P}}3,{\\mathscr{PC}}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{PC}}3$</annotation>\n </semantics></math> the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>P</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}3}(k)$</annotation>\n </semantics></math> were known for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the first part of this article, we prove the claw-free version of these results by giving the values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>PC</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}3}(k)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has all cycle lengths from 3 to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> $| V(G)| $</annotation>\n </semantics></math> except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> without 4-cycles has all cycle lengths other than 4. It was already known that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mn>9</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>7</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{3,5,\\ldots ,9\\}\\cup \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,\\lceil | V(G)| \\unicode{x02215}2\\rceil +3\\}\\cup \\{| V(G)| -7,\\ldots ,| V(G)| \\}\\subseteq {\\mathscr{CS}}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> can be embedded in the plane such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $k\\in \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,| V(G)| \\},G$</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-cycle <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> and all vertices not in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> lie in the exterior of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The cycle spectrum of a graph is the set of the cycle lengths in . Let be a graph class. For any integer , define to be the least integer such that for any with circumference at least . Denote by , and the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of and were known for all . In the first part of this article, we prove the claw-free version of these results by giving the values of and for all . In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph has all cycle lengths from 3 to except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph without 4-cycles has all cycle lengths other than 4. It was already known that . We prove that can be embedded in the plane such that for any has a -cycle and all vertices not in lie in the exterior of .