{"title":"Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles","authors":"On-Hei Solomon Lo","doi":"10.1002/jgt.23152","DOIUrl":null,"url":null,"abstract":"<p>The cycle spectrum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{CS}}(G)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the set of the cycle lengths in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{G}}$</annotation>\n </semantics></math> be a graph class. For any integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>, define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{G}}}(k)$</annotation>\n </semantics></math> to be the least integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> ${k}^{^{\\prime} }\\ge k$</annotation>\n </semantics></math> such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G\\in {\\mathscr{G}}$</annotation>\n </semantics></math> with circumference at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>k</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n \n <mo>≠</mo>\n \n <mi>∅</mi>\n </mrow>\n </mrow>\n <annotation> $k,{\\mathscr{CS}}(G)\\cap [k,{k}^{^{\\prime} }]\\ne \\varnothing $</annotation>\n </semantics></math>. Denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n \n <mo>,</mo>\n \n <mi>P</mi>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>PC</mi>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{P}},{\\mathscr{P}}3,{\\mathscr{PC}}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{PC}}3$</annotation>\n </semantics></math> the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>P</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{P}}3}(k)$</annotation>\n </semantics></math> were known for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the first part of this article, we prove the claw-free version of these results by giving the values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>PC</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}}(k)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mrow>\n <mi>PC</mi>\n \n <mn>3</mn>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${f}_{{\\mathscr{PC}}3}(k)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $k\\ge 3$</annotation>\n </semantics></math>. In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has all cycle lengths from 3 to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n </mrow>\n <annotation> $| V(G)| $</annotation>\n </semantics></math> except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> without 4-cycles has all cycle lengths other than 4. It was already known that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mn>9</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mrow>\n <mo>⌈</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∪</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>−</mo>\n \n <mn>7</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>CS</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{3,5,\\ldots ,9\\}\\cup \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,\\lceil | V(G)| \\unicode{x02215}2\\rceil +3\\}\\cup \\{| V(G)| -7,\\ldots ,| V(G)| \\}\\subseteq {\\mathscr{CS}}(G)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> can be embedded in the plane such that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $k\\in \\{\\lfloor | V(G)| \\unicode{x02215}2\\rfloor ,\\ldots ,| V(G)| \\},G$</annotation>\n </semantics></math> has a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-cycle <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> and all vertices not in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> lie in the exterior of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"702-728"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23152","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The cycle spectrum of a graph is the set of the cycle lengths in . Let be a graph class. For any integer , define to be the least integer such that for any with circumference at least . Denote by , and the classes of 3-connected planar graphs, 3-connected cubic planar graphs, 3-connected claw-free planar graphs, and 3-connected claw-free cubic planar graphs, respectively. The values of and were known for all . In the first part of this article, we prove the claw-free version of these results by giving the values of and for all . In the second part we study the cycle spectra of 4-connected planar graphs without 4-cycles. Bondy conjectured that every 4-connected planar graph has all cycle lengths from 3 to except possibly one even length. The truth of this conjecture would imply that every 4-connected planar graph without 4-cycles has all cycle lengths other than 4. It was already known that . We prove that can be embedded in the plane such that for any has a -cycle and all vertices not in lie in the exterior of .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .