计算边色图中的彩虹三角形

IF 0.9 3区 数学 Q2 MATHEMATICS
Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang
{"title":"计算边色图中的彩虹三角形","authors":"Xueliang Li,&nbsp;Bo Ning,&nbsp;Yongtang Shi,&nbsp;Shenggui Zhang","doi":"10.1002/jgt.23158","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be an edge-colored graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices. The minimum color degree of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)$</annotation>\n </semantics></math>, is defined as the minimum number of colors assigned to the edges incident to a vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In 2013, Li proved that an edge-colored graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices contains a rainbow triangle if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge \\frac{n+1}{2}$</annotation>\n </semantics></math>. In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>1</mn>\n \n <mn>6</mn>\n </mfrac>\n \n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $\\frac{1}{6}{\\delta }^{c}(G)(2{\\delta }^{c}(G)-n)n$</annotation>\n </semantics></math>, which is best possible by considering the rainbow <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-partite Turán graph, where its order is divisible by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. This means that there are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({n}^{2})$</annotation>\n </semantics></math> rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge \\frac{n+1}{2}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({n}^{3})$</annotation>\n </semantics></math> rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>c</mi>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge cn$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>&gt;</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $c\\gt \\frac{1}{2}$</annotation>\n </semantics></math>. Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${F}_{k}$</annotation>\n </semantics></math> (i.e., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> rainbow triangles sharing a common vertex).</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"742-758"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting rainbow triangles in edge-colored graphs\",\"authors\":\"Xueliang Li,&nbsp;Bo Ning,&nbsp;Yongtang Shi,&nbsp;Shenggui Zhang\",\"doi\":\"10.1002/jgt.23158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be an edge-colored graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices. The minimum color degree of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)$</annotation>\\n </semantics></math>, is defined as the minimum number of colors assigned to the edges incident to a vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In 2013, Li proved that an edge-colored graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices contains a rainbow triangle if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)\\\\ge \\\\frac{n+1}{2}$</annotation>\\n </semantics></math>. In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>6</mn>\\n </mfrac>\\n \\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{1}{6}{\\\\delta }^{c}(G)(2{\\\\delta }^{c}(G)-n)n$</annotation>\\n </semantics></math>, which is best possible by considering the rainbow <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-partite Turán graph, where its order is divisible by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>. This means that there are <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Omega }}({n}^{2})$</annotation>\\n </semantics></math> rainbow triangles in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)\\\\ge \\\\frac{n+1}{2}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Omega }}({n}^{3})$</annotation>\\n </semantics></math> rainbow triangles in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>c</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)\\\\ge cn$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $c\\\\gt \\\\frac{1}{2}$</annotation>\\n </semantics></math>. Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${F}_{k}$</annotation>\\n </semantics></math> (i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> rainbow triangles sharing a common vertex).</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 4\",\"pages\":\"742-758\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23158\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23158","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 是一个顶点上的边色图。在 2013 年,Li 证明了如果......,则顶点上的边色图包含彩虹三角形。在本文中,我们获得了关于.NET 中通过一个给定顶点的彩虹三角形数量的几个估计值。因此,我们证明了边色图中彩虹三角形的计数结果。其中一个主要定理指出,彩虹三角形的数量至少为 ,考虑到彩虹部分图兰图的阶数可被 。这意味着,如果 ,则有彩虹三角形;如果 ,则有彩虹三角形。这两个结果在大小阶的意义上都很严密。我们还证明了 Broersma 等人提出的彩色邻域联合条件下彩虹三角形的计数版定理,以及强迫彩色友谊子图(即共享一个共同顶点的彩虹三角形)的渐近紧密彩色度条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting rainbow triangles in edge-colored graphs

Let G $G$ be an edge-colored graph on n $n$ vertices. The minimum color degree of G $G$ , denoted by δ c ( G ) ${\delta }^{c}(G)$ , is defined as the minimum number of colors assigned to the edges incident to a vertex in G $G$ . In 2013, Li proved that an edge-colored graph G $G$ on n $n$ vertices contains a rainbow triangle if δ c ( G ) n + 1 2 ${\delta }^{c}(G)\ge \frac{n+1}{2}$ . In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in G $G$ . As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in G $G$ is at least 1 6 δ c ( G ) ( 2 δ c ( G ) n ) n $\frac{1}{6}{\delta }^{c}(G)(2{\delta }^{c}(G)-n)n$ , which is best possible by considering the rainbow k $k$ -partite Turán graph, where its order is divisible by k $k$ . This means that there are Ω ( n 2 ) ${\rm{\Omega }}({n}^{2})$ rainbow triangles in G $G$ if δ c ( G ) n + 1 2 ${\delta }^{c}(G)\ge \frac{n+1}{2}$ , and Ω ( n 3 ) ${\rm{\Omega }}({n}^{3})$ rainbow triangles in G $G$ if δ c ( G ) c n ${\delta }^{c}(G)\ge cn$ when c > 1 2 $c\gt \frac{1}{2}$ . Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph F k ${F}_{k}$ (i.e., k $k$ rainbow triangles sharing a common vertex).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信