求助PDF
{"title":"计算边色图中的彩虹三角形","authors":"Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang","doi":"10.1002/jgt.23158","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be an edge-colored graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices. The minimum color degree of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)$</annotation>\n </semantics></math>, is defined as the minimum number of colors assigned to the edges incident to a vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In 2013, Li proved that an edge-colored graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices contains a rainbow triangle if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge \\frac{n+1}{2}$</annotation>\n </semantics></math>. In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>1</mn>\n \n <mn>6</mn>\n </mfrac>\n \n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $\\frac{1}{6}{\\delta }^{c}(G)(2{\\delta }^{c}(G)-n)n$</annotation>\n </semantics></math>, which is best possible by considering the rainbow <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-partite Turán graph, where its order is divisible by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. This means that there are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({n}^{2})$</annotation>\n </semantics></math> rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge \\frac{n+1}{2}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({n}^{3})$</annotation>\n </semantics></math> rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>c</mi>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge cn$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>></mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $c\\gt \\frac{1}{2}$</annotation>\n </semantics></math>. Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${F}_{k}$</annotation>\n </semantics></math> (i.e., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> rainbow triangles sharing a common vertex).</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"742-758"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting rainbow triangles in edge-colored graphs\",\"authors\":\"Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang\",\"doi\":\"10.1002/jgt.23158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be an edge-colored graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices. The minimum color degree of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)$</annotation>\\n </semantics></math>, is defined as the minimum number of colors assigned to the edges incident to a vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In 2013, Li proved that an edge-colored graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices contains a rainbow triangle if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)\\\\ge \\\\frac{n+1}{2}$</annotation>\\n </semantics></math>. In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>6</mn>\\n </mfrac>\\n \\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{1}{6}{\\\\delta }^{c}(G)(2{\\\\delta }^{c}(G)-n)n$</annotation>\\n </semantics></math>, which is best possible by considering the rainbow <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-partite Turán graph, where its order is divisible by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>. This means that there are <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Omega }}({n}^{2})$</annotation>\\n </semantics></math> rainbow triangles in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)\\\\ge \\\\frac{n+1}{2}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Omega }}({n}^{3})$</annotation>\\n </semantics></math> rainbow triangles in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mi>c</mi>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>c</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\delta }^{c}(G)\\\\ge cn$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n \\n <mo>></mo>\\n \\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $c\\\\gt \\\\frac{1}{2}$</annotation>\\n </semantics></math>. Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${F}_{k}$</annotation>\\n </semantics></math> (i.e., <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> rainbow triangles sharing a common vertex).</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 4\",\"pages\":\"742-758\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23158\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23158","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用