下载PDF
{"title":"计算规则图形中的三角形","authors":"Jialin He, Xinmin Hou, Jie Ma, Tianying Xie","doi":"10.1002/jgt.23156","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math>, in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-regular graphs, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is an odd integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $t(n,k)\\gt 0$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $k\\gt \\frac{2n}{5}$</annotation>\n </semantics></math>. In a striking work, Lo has provided the exact value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, given that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mrow>\n <mn>12</mn>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo><</mo>\n \n <mi>k</mi>\n \n <mo><</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}+\\frac{12\\sqrt{n}}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. Here, we bridge the gap between the aforementioned results by determining the precise value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> in the entire range <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo><</mo>\n \n <mi>k</mi>\n \n <mo><</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156","citationCount":"0","resultStr":"{\"title\":\"Counting triangles in regular graphs\",\"authors\":\"Jialin He, Xinmin Hou, Jie Ma, Tianying Xie\",\"doi\":\"10.1002/jgt.23156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)$</annotation>\\n </semantics></math>, in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-regular graphs, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is an odd integer and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>></mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)\\\\gt 0$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>></mo>\\n \\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\gt \\\\frac{2n}{5}$</annotation>\\n </semantics></math>. In a striking work, Lo has provided the exact value of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)$</annotation>\\n </semantics></math> for sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, given that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mo>+</mo>\\n \\n <mfrac>\\n <mrow>\\n <mn>12</mn>\\n \\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mo><</mo>\\n \\n <mi>k</mi>\\n \\n <mo><</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{2n}{5}+\\\\frac{12\\\\sqrt{n}}{5}\\\\lt k\\\\lt \\\\frac{n}{2}$</annotation>\\n </semantics></math>. Here, we bridge the gap between the aforementioned results by determining the precise value of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)$</annotation>\\n </semantics></math> in the entire range <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mo><</mo>\\n \\n <mi>k</mi>\\n \\n <mo><</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{2n}{5}\\\\lt k\\\\lt \\\\frac{n}{2}$</annotation>\\n </semantics></math>. This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用