计算规则图形中的三角形

Pub Date : 2024-07-25 DOI:10.1002/jgt.23156
Jialin He, Xinmin Hou, Jie Ma, Tianying Xie
{"title":"计算规则图形中的三角形","authors":"Jialin He,&nbsp;Xinmin Hou,&nbsp;Jie Ma,&nbsp;Tianying Xie","doi":"10.1002/jgt.23156","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math>, in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-regular graphs, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is an odd integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n <annotation> $t(n,k)\\gt 0$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>&gt;</mo>\n \n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $k\\gt \\frac{2n}{5}$</annotation>\n </semantics></math>. In a striking work, Lo has provided the exact value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, given that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mfrac>\n <mrow>\n <mn>12</mn>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n \n <mo>&lt;</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}+\\frac{12\\sqrt{n}}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. Here, we bridge the gap between the aforementioned results by determining the precise value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $t(n,k)$</annotation>\n </semantics></math> in the entire range <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>5</mn>\n </mfrac>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n \n <mo>&lt;</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $\\frac{2n}{5}\\lt k\\lt \\frac{n}{2}$</annotation>\n </semantics></math>. This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156","citationCount":"0","resultStr":"{\"title\":\"Counting triangles in regular graphs\",\"authors\":\"Jialin He,&nbsp;Xinmin Hou,&nbsp;Jie Ma,&nbsp;Tianying Xie\",\"doi\":\"10.1002/jgt.23156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the minimum number of triangles, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)$</annotation>\\n </semantics></math>, in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-regular graphs, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is an odd integer and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)\\\\gt 0$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $k\\\\gt \\\\frac{2n}{5}$</annotation>\\n </semantics></math>. In a striking work, Lo has provided the exact value of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)$</annotation>\\n </semantics></math> for sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, given that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mo>+</mo>\\n \\n <mfrac>\\n <mrow>\\n <mn>12</mn>\\n \\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mo>&lt;</mo>\\n \\n <mi>k</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{2n}{5}+\\\\frac{12\\\\sqrt{n}}{5}\\\\lt k\\\\lt \\\\frac{n}{2}$</annotation>\\n </semantics></math>. Here, we bridge the gap between the aforementioned results by determining the precise value of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $t(n,k)$</annotation>\\n </semantics></math> in the entire range <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mo>&lt;</mo>\\n \\n <mi>k</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{2n}{5}\\\\lt k\\\\lt \\\\frac{n}{2}$</annotation>\\n </semantics></math>. This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23156\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将研究有顶点不规则图形中三角形的最小数量,用 表示,其中 为奇数整数, 为偶数整数。著名的 Andrásfai-Erdős-Sós 定理证明,如果 .在一项引人注目的工作中,Lo 提供了足够大的 , 的精确值,即 .在这里,我们通过确定整个范围内 的精确值,弥补了上述结果之间的差距。这证实了康比、德-乔尼斯-德-韦尔克洛斯和康对足够大的 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Counting triangles in regular graphs

In this paper, we investigate the minimum number of triangles, denoted by t ( n , k ) $t(n,k)$ , in n $n$ -vertex k $k$ -regular graphs, where n $n$ is an odd integer and k $k$ is an even integer. The well-known Andrásfai–Erdős–Sós Theorem has established that t ( n , k ) > 0 $t(n,k)\gt 0$ if k > 2 n 5 $k\gt \frac{2n}{5}$ . In a striking work, Lo has provided the exact value of t ( n , k ) $t(n,k)$ for sufficiently large n $n$ , given that 2 n 5 + 12 n 5 < k < n 2 $\frac{2n}{5}+\frac{12\sqrt{n}}{5}\lt k\lt \frac{n}{2}$ . Here, we bridge the gap between the aforementioned results by determining the precise value of t ( n , k ) $t(n,k)$ in the entire range 2 n 5 < k < n 2 $\frac{2n}{5}\lt k\lt \frac{n}{2}$ . This confirms a conjecture of Cambie, de Joannis de Verclos, and Kang for sufficiently large n $n$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信