平面图形的缺陷非循环着色

Pub Date : 2024-07-21 DOI:10.1002/jgt.23154
On-Hei Solomon Lo, Ben Seamone, Xuding Zhu
{"title":"平面图形的缺陷非循环着色","authors":"On-Hei Solomon Lo,&nbsp;Ben Seamone,&nbsp;Xuding Zhu","doi":"10.1002/jgt.23154","DOIUrl":null,"url":null,"abstract":"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and a coloring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>φ</mi>\n </mrow>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> be a positive integer. We denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}(G)$</annotation>\n </semantics></math> the minimum integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a proper <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-coloring which has a 2CC transversal of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, and by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mi>k</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}^{^{\\prime} }(G)$</annotation>\n </semantics></math> the minimum size of a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> $G-{E}^{^{\\prime} }$</annotation>\n </semantics></math> is acyclic <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable. We prove that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex 3-colorable planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>3</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}(G)\\le n-3$</annotation>\n </semantics></math> and for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{4}(G)\\le n-5$</annotation>\n </semantics></math> provided that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $n\\ge 5$</annotation>\n </semantics></math>. We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> can be chosen in such a way that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> induces a forest. We also prove that for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msubsup>\n <mi>m</mi>\n \n <mn>3</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>13</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>42</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}^{^{\\prime} }(G)\\le (13n-42)\\unicode{x02215}10$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mn>4</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>12</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> ${m}_{4}^{^{\\prime} }(G)\\le (3n-12)\\unicode{x02215}5$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defective acyclic colorings of planar graphs\",\"authors\":\"On-Hei Solomon Lo,&nbsp;Ben Seamone,&nbsp;Xuding Zhu\",\"doi\":\"10.1002/jgt.23154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and a coloring <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>φ</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\varphi $</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $E(G)$</annotation>\\n </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> be a positive integer. We denote by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${m}_{k}(G)$</annotation>\\n </semantics></math> the minimum integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a proper <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-coloring which has a 2CC transversal of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, and by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${m}_{k}^{^{\\\\prime} }(G)$</annotation>\\n </semantics></math> the minimum size of a subset <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $E(G)$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> $G-{E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> is acyclic <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorable. We prove that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex 3-colorable planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $G,{m}_{3}(G)\\\\le n-3$</annotation>\\n </semantics></math> and for any planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>4</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n <annotation> $G,{m}_{4}(G)\\\\le n-5$</annotation>\\n </semantics></math> provided that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\ge 5$</annotation>\\n </semantics></math>. We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> can be chosen in such a way that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> induces a forest. We also prove that for any planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msubsup>\\n <mi>m</mi>\\n \\n <mn>3</mn>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>13</mn>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>42</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>10</mn>\\n </mrow>\\n </mrow>\\n <annotation> $G,{m}_{3}^{^{\\\\prime} }(G)\\\\le (13n-42)\\\\unicode{x02215}10$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>m</mi>\\n \\n <mn>4</mn>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>12</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${m}_{4}^{^{\\\\prime} }(G)\\\\le (3n-12)\\\\unicode{x02215}5$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究平面图形缺陷非循环着色的两种变体。对于一个图和一个着色为 , 的双色循环 (2CC) 横向是与每个双色循环相交的子集。设 为正整数。我们用最小整数来表示这样一个图,它有一个大小为 的 2CC 横向,用最小大小来表示这样一个图的子集,它是非循环可着色的。我们证明了,对于任何-顶点 3-可着色的平面图,以及对于任何平面图,只要 。我们证明了这些上界是尖锐的:有无限多的平面图可以达到这些上界。此外,最小 2CC 横向的选择方式可以诱导出一个森林。我们还证明,对于任何平面图且 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Defective acyclic colorings of planar graphs

This paper studies two variants of defective acyclic coloring of planar graphs. For a graph G $G$ and a coloring φ $\varphi $ of G $G$ , a 2-colored cycle (2CC) transversal is a subset E ${E}^{^{\prime} }$ of E ( G ) $E(G)$ that intersects every 2-colored cycle. Let k $k$ be a positive integer. We denote by m k ( G ) ${m}_{k}(G)$ the minimum integer m $m$ such that G $G$ has a proper k $k$ -coloring which has a 2CC transversal of size m $m$ , and by m k ( G ) ${m}_{k}^{^{\prime} }(G)$ the minimum size of a subset E ${E}^{^{\prime} }$ of E ( G ) $E(G)$ such that G E $G-{E}^{^{\prime} }$ is acyclic k $k$ -colorable. We prove that for any n $n$ -vertex 3-colorable planar graph G , m 3 ( G ) n 3 $G,{m}_{3}(G)\le n-3$ and for any planar graph G , m 4 ( G ) n 5 $G,{m}_{4}(G)\le n-5$ provided that n 5 $n\ge 5$ . We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal E ${E}^{^{\prime} }$ can be chosen in such a way that E ${E}^{^{\prime} }$ induces a forest. We also prove that for any planar graph G , m 3 ( G ) ( 13 n 42 ) 10 $G,{m}_{3}^{^{\prime} }(G)\le (13n-42)\unicode{x02215}10$ and m 4 ( G ) ( 3 n 12 ) 5 ${m}_{4}^{^{\prime} }(G)\le (3n-12)\unicode{x02215}5$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信