求助PDF
{"title":"平面图形的缺陷非循环着色","authors":"On-Hei Solomon Lo, Ben Seamone, Xuding Zhu","doi":"10.1002/jgt.23154","DOIUrl":null,"url":null,"abstract":"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and a coloring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>φ</mi>\n </mrow>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> be a positive integer. We denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}(G)$</annotation>\n </semantics></math> the minimum integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a proper <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-coloring which has a 2CC transversal of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, and by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mi>k</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}^{^{\\prime} }(G)$</annotation>\n </semantics></math> the minimum size of a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> $G-{E}^{^{\\prime} }$</annotation>\n </semantics></math> is acyclic <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable. We prove that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex 3-colorable planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>3</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}(G)\\le n-3$</annotation>\n </semantics></math> and for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{4}(G)\\le n-5$</annotation>\n </semantics></math> provided that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $n\\ge 5$</annotation>\n </semantics></math>. We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> can be chosen in such a way that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> induces a forest. We also prove that for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msubsup>\n <mi>m</mi>\n \n <mn>3</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>13</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>42</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}^{^{\\prime} }(G)\\le (13n-42)\\unicode{x02215}10$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mn>4</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>12</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> ${m}_{4}^{^{\\prime} }(G)\\le (3n-12)\\unicode{x02215}5$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defective acyclic colorings of planar graphs\",\"authors\":\"On-Hei Solomon Lo, Ben Seamone, Xuding Zhu\",\"doi\":\"10.1002/jgt.23154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and a coloring <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>φ</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\varphi $</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $E(G)$</annotation>\\n </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> be a positive integer. We denote by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${m}_{k}(G)$</annotation>\\n </semantics></math> the minimum integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a proper <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-coloring which has a 2CC transversal of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, and by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> ${m}_{k}^{^{\\\\prime} }(G)$</annotation>\\n </semantics></math> the minimum size of a subset <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $E(G)$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> $G-{E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> is acyclic <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorable. We prove that for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex 3-colorable planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $G,{m}_{3}(G)\\\\le n-3$</annotation>\\n </semantics></math> and for any planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>4</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n <annotation> $G,{m}_{4}(G)\\\\le n-5$</annotation>\\n </semantics></math> provided that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\ge 5$</annotation>\\n </semantics></math>. We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> can be chosen in such a way that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>E</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${E}^{^{\\\\prime} }$</annotation>\\n </semantics></math> induces a forest. We also prove that for any planar graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <msubsup>\\n <mi>m</mi>\\n \\n <mn>3</mn>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>13</mn>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>42</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>10</mn>\\n </mrow>\\n </mrow>\\n <annotation> $G,{m}_{3}^{^{\\\\prime} }(G)\\\\le (13n-42)\\\\unicode{x02215}10$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>m</mi>\\n \\n <mn>4</mn>\\n \\n <mo>′</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>12</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </mrow>\\n <annotation> ${m}_{4}^{^{\\\\prime} }(G)\\\\le (3n-12)\\\\unicode{x02215}5$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用