{"title":"Defective acyclic colorings of planar graphs","authors":"On-Hei Solomon Lo, Ben Seamone, Xuding Zhu","doi":"10.1002/jgt.23154","DOIUrl":null,"url":null,"abstract":"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and a coloring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>φ</mi>\n </mrow>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> be a positive integer. We denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}(G)$</annotation>\n </semantics></math> the minimum integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a proper <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-coloring which has a 2CC transversal of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, and by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mi>k</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}^{^{\\prime} }(G)$</annotation>\n </semantics></math> the minimum size of a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> $G-{E}^{^{\\prime} }$</annotation>\n </semantics></math> is acyclic <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable. We prove that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex 3-colorable planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>3</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}(G)\\le n-3$</annotation>\n </semantics></math> and for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{4}(G)\\le n-5$</annotation>\n </semantics></math> provided that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $n\\ge 5$</annotation>\n </semantics></math>. We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> can be chosen in such a way that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> induces a forest. We also prove that for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msubsup>\n <mi>m</mi>\n \n <mn>3</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>13</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>42</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}^{^{\\prime} }(G)\\le (13n-42)\\unicode{x02215}10$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mn>4</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>12</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> ${m}_{4}^{^{\\prime} }(G)\\le (3n-12)\\unicode{x02215}5$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"729-741"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23154","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies two variants of defective acyclic coloring of planar graphs. For a graph and a coloring of , a 2-colored cycle (2CC) transversal is a subset of that intersects every 2-colored cycle. Let be a positive integer. We denote by the minimum integer such that has a proper -coloring which has a 2CC transversal of size , and by the minimum size of a subset of such that is acyclic -colorable. We prove that for any -vertex 3-colorable planar graph and for any planar graph provided that . We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal can be chosen in such a way that induces a forest. We also prove that for any planar graph and .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .