Defective acyclic colorings of planar graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
On-Hei Solomon Lo, Ben Seamone, Xuding Zhu
{"title":"Defective acyclic colorings of planar graphs","authors":"On-Hei Solomon Lo,&nbsp;Ben Seamone,&nbsp;Xuding Zhu","doi":"10.1002/jgt.23154","DOIUrl":null,"url":null,"abstract":"<p>This paper studies two variants of defective acyclic coloring of planar graphs. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and a coloring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>φ</mi>\n </mrow>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, a 2-colored cycle (2CC) transversal is a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> that intersects every 2-colored cycle. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> be a positive integer. We denote by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}(G)$</annotation>\n </semantics></math> the minimum integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a proper <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-coloring which has a 2CC transversal of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, and by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mi>k</mi>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${m}_{k}^{^{\\prime} }(G)$</annotation>\n </semantics></math> the minimum size of a subset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $E(G)$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> $G-{E}^{^{\\prime} }$</annotation>\n </semantics></math> is acyclic <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorable. We prove that for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex 3-colorable planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>3</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}(G)\\le n-3$</annotation>\n </semantics></math> and for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>4</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{4}(G)\\le n-5$</annotation>\n </semantics></math> provided that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> $n\\ge 5$</annotation>\n </semantics></math>. We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> can be chosen in such a way that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>E</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${E}^{^{\\prime} }$</annotation>\n </semantics></math> induces a forest. We also prove that for any planar graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msubsup>\n <mi>m</mi>\n \n <mn>3</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>13</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>42</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $G,{m}_{3}^{^{\\prime} }(G)\\le (13n-42)\\unicode{x02215}10$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>m</mi>\n \n <mn>4</mn>\n \n <mo>′</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>12</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>5</mn>\n </mrow>\n </mrow>\n <annotation> ${m}_{4}^{^{\\prime} }(G)\\le (3n-12)\\unicode{x02215}5$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"729-741"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23154","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies two variants of defective acyclic coloring of planar graphs. For a graph G $G$ and a coloring φ $\varphi $ of G $G$ , a 2-colored cycle (2CC) transversal is a subset E ${E}^{^{\prime} }$ of E ( G ) $E(G)$ that intersects every 2-colored cycle. Let k $k$ be a positive integer. We denote by m k ( G ) ${m}_{k}(G)$ the minimum integer m $m$ such that G $G$ has a proper k $k$ -coloring which has a 2CC transversal of size m $m$ , and by m k ( G ) ${m}_{k}^{^{\prime} }(G)$ the minimum size of a subset E ${E}^{^{\prime} }$ of E ( G ) $E(G)$ such that G E $G-{E}^{^{\prime} }$ is acyclic k $k$ -colorable. We prove that for any n $n$ -vertex 3-colorable planar graph G , m 3 ( G ) n 3 $G,{m}_{3}(G)\le n-3$ and for any planar graph G , m 4 ( G ) n 5 $G,{m}_{4}(G)\le n-5$ provided that n 5 $n\ge 5$ . We show that these upper bounds are sharp: there are infinitely many planar graphs attaining these upper bounds. Moreover, the minimum 2CC transversal E ${E}^{^{\prime} }$ can be chosen in such a way that E ${E}^{^{\prime} }$ induces a forest. We also prove that for any planar graph G , m 3 ( G ) ( 13 n 42 ) 10 $G,{m}_{3}^{^{\prime} }(G)\le (13n-42)\unicode{x02215}10$ and m 4 ( G ) ( 3 n 12 ) 5 ${m}_{4}^{^{\prime} }(G)\le (3n-12)\unicode{x02215}5$ .

平面图形的缺陷非循环着色
本文研究平面图形缺陷非循环着色的两种变体。对于一个图和一个着色为 , 的双色循环 (2CC) 横向是与每个双色循环相交的子集。设 为正整数。我们用最小整数来表示这样一个图,它有一个大小为 的 2CC 横向,用最小大小来表示这样一个图的子集,它是非循环可着色的。我们证明了,对于任何-顶点 3-可着色的平面图,以及对于任何平面图,只要 。我们证明了这些上界是尖锐的:有无限多的平面图可以达到这些上界。此外,最小 2CC 横向的选择方式可以诱导出一个森林。我们还证明,对于任何平面图且 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信