多图维京定理的局部版本

Pub Date : 2024-07-16 DOI:10.1002/jgt.23155
Clinton T. Conley, Jan Grebík, Oleg Pikhurko
{"title":"多图维京定理的局部版本","authors":"Clinton T. Conley,&nbsp;Jan Grebík,&nbsp;Oleg Pikhurko","doi":"10.1002/jgt.23155","DOIUrl":null,"url":null,"abstract":"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $G=(V,E)$</annotation>\n </semantics></math> admits a proper edge colouring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mo>:</mo>\n \n <mi>E</mi>\n \n <mo>→</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n <mspace></mspace>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\phi :E\\to \\{1,2,\\ldots \\,\\}$</annotation>\n </semantics></math> which is <i>local</i>, that is, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>e</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>x</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>x</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>y</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>y</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\phi (e)\\leqslant \\max \\{d(x)+\\pi (x),d(y)+\\pi (y)\\}$</annotation>\n </semantics></math> for every edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> with end-points <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $x,y\\in V$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>z</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $d(z)$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>z</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\pi (z)$</annotation>\n </semantics></math>) denotes the degree of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n </mrow>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math> (resp. the maximum edge multiplicity at <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n </mrow>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math>). This is derived from a local version of the Fan Equation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155","citationCount":"0","resultStr":"{\"title\":\"Local version of Vizing's theorem for multigraphs\",\"authors\":\"Clinton T. Conley,&nbsp;Jan Grebík,&nbsp;Oleg Pikhurko\",\"doi\":\"10.1002/jgt.23155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $G=(V,E)$</annotation>\\n </semantics></math> admits a proper edge colouring <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϕ</mi>\\n \\n <mo>:</mo>\\n \\n <mi>E</mi>\\n \\n <mo>→</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n <mspace></mspace>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\phi :E\\\\to \\\\{1,2,\\\\ldots \\\\,\\\\}$</annotation>\\n </semantics></math> which is <i>local</i>, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϕ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>e</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>x</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>π</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>x</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>y</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>π</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>y</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\phi (e)\\\\leqslant \\\\max \\\\{d(x)+\\\\pi (x),d(y)+\\\\pi (y)\\\\}$</annotation>\\n </semantics></math> for every edge <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> with end-points <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>x</mi>\\n \\n <mo>,</mo>\\n \\n <mi>y</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n <annotation> $x,y\\\\in V$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>z</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $d(z)$</annotation>\\n </semantics></math> (resp. <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>π</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>z</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\pi (z)$</annotation>\\n </semantics></math>) denotes the degree of a vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>z</mi>\\n </mrow>\\n </mrow>\\n <annotation> $z$</annotation>\\n </semantics></math> (resp. the maximum edge multiplicity at <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>z</mi>\\n </mrow>\\n </mrow>\\n <annotation> $z$</annotation>\\n </semantics></math>). This is derived from a local version of the Fan Equation.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过扩展克里斯蒂安森的一个结果,我们证明了每一个多图都有一个适当的边着色,这个边着色是局部的,也就是说,对于每一条有端点的边,(resp. )表示顶点的度数(resp. 最大边乘)。这是从范式方程的局部版本中推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local version of Vizing's theorem for multigraphs

Extending a result of Christiansen, we prove that every multigraph G = ( V , E ) $G=(V,E)$ admits a proper edge colouring ϕ : E { 1 , 2 , } $\phi :E\to \{1,2,\ldots \,\}$ which is local, that is, ϕ ( e ) max { d ( x ) + π ( x ) , d ( y ) + π ( y ) } $\phi (e)\leqslant \max \{d(x)+\pi (x),d(y)+\pi (y)\}$ for every edge e $e$ with end-points x , y V $x,y\in V$ , where d ( z ) $d(z)$ (resp. π ( z ) $\pi (z)$ ) denotes the degree of a vertex z $z$ (resp. the maximum edge multiplicity at z $z$ ). This is derived from a local version of the Fan Equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信