Clinton T. Conley, Jan Grebík, Oleg Pikhurko
下载PDF
{"title":"多图维京定理的局部版本","authors":"Clinton T. Conley, Jan Grebík, Oleg Pikhurko","doi":"10.1002/jgt.23155","DOIUrl":null,"url":null,"abstract":"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $G=(V,E)$</annotation>\n </semantics></math> admits a proper edge colouring <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mo>:</mo>\n \n <mi>E</mi>\n \n <mo>→</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n <mspace></mspace>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\phi :E\\to \\{1,2,\\ldots \\,\\}$</annotation>\n </semantics></math> which is <i>local</i>, that is, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>e</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>x</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>x</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>y</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>y</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\phi (e)\\leqslant \\max \\{d(x)+\\pi (x),d(y)+\\pi (y)\\}$</annotation>\n </semantics></math> for every edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> with end-points <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <mi>y</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n </mrow>\n <annotation> $x,y\\in V$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>z</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $d(z)$</annotation>\n </semantics></math> (resp. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>π</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>z</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\pi (z)$</annotation>\n </semantics></math>) denotes the degree of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n </mrow>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math> (resp. the maximum edge multiplicity at <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>z</mi>\n </mrow>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math>). This is derived from a local version of the Fan Equation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155","citationCount":"0","resultStr":"{\"title\":\"Local version of Vizing's theorem for multigraphs\",\"authors\":\"Clinton T. Conley, Jan Grebík, Oleg Pikhurko\",\"doi\":\"10.1002/jgt.23155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extending a result of Christiansen, we prove that every multigraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $G=(V,E)$</annotation>\\n </semantics></math> admits a proper edge colouring <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϕ</mi>\\n \\n <mo>:</mo>\\n \\n <mi>E</mi>\\n \\n <mo>→</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n <mspace></mspace>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\phi :E\\\\to \\\\{1,2,\\\\ldots \\\\,\\\\}$</annotation>\\n </semantics></math> which is <i>local</i>, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϕ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>e</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>x</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>π</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>x</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>y</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>π</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>y</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\phi (e)\\\\leqslant \\\\max \\\\{d(x)+\\\\pi (x),d(y)+\\\\pi (y)\\\\}$</annotation>\\n </semantics></math> for every edge <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> with end-points <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>x</mi>\\n \\n <mo>,</mo>\\n \\n <mi>y</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n <annotation> $x,y\\\\in V$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>z</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $d(z)$</annotation>\\n </semantics></math> (resp. <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>π</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>z</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\pi (z)$</annotation>\\n </semantics></math>) denotes the degree of a vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>z</mi>\\n </mrow>\\n </mrow>\\n <annotation> $z$</annotation>\\n </semantics></math> (resp. the maximum edge multiplicity at <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>z</mi>\\n </mrow>\\n </mrow>\\n <annotation> $z$</annotation>\\n </semantics></math>). This is derived from a local version of the Fan Equation.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用