Mathematical Logic Quarterly最新文献

筛选
英文 中文
A property of forcing notions and preservation of cardinal invariants 强迫概念的性质和基本不变量的保存
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-12-04 DOI: 10.1002/malq.202300013
Yushiro Aoki
{"title":"A property of forcing notions and preservation of cardinal invariants","authors":"Yushiro Aoki","doi":"10.1002/malq.202300013","DOIUrl":"10.1002/malq.202300013","url":null,"abstract":"<p>We define a property of forcing notions and show that there exists a model of its forcing axiom and the negation of the continuum hypothesis in which the Cichoń-Blass diagram of cardinal invariants is the same as in the Cohen model. As a corollary, its forcing axiom and the forcing axiom for <span></span><math>\u0000 <semantics>\u0000 <mi>σ</mi>\u0000 <annotation>$sigma$</annotation>\u0000 </semantics></math>-centered forcing notions are independent of each other.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"73-78"},"PeriodicalIF":0.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitary logic with infinite sequents: syntactic investigations 具有无限序列的无限逻辑:句法研究
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-12-04 DOI: 10.1002/malq.202300011
Matteo Tesi
{"title":"Infinitary logic with infinite sequents: syntactic investigations","authors":"Matteo Tesi","doi":"10.1002/malq.202300011","DOIUrl":"10.1002/malq.202300011","url":null,"abstract":"<p>The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"79-98"},"PeriodicalIF":0.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dichotomy for T $T$ -convex fields with a monomial group 具有单项式群的t凸域的二分类
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-11-21 DOI: 10.1002/malq.202300017
Elliot Kaplan, Christoph Kesting
{"title":"A dichotomy for \u0000 \u0000 T\u0000 $T$\u0000 -convex fields with a monomial group","authors":"Elliot Kaplan,&nbsp;Christoph Kesting","doi":"10.1002/malq.202300017","DOIUrl":"10.1002/malq.202300017","url":null,"abstract":"<p>We prove a dichotomy for o-minimal fields <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math>, expanded by a <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math>-convex valuation ring (where <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is the theory of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math>) and a compatible monomial group. We show that if <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is power bounded, then this expansion of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math> is model complete (assuming that <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math> defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"99-110"},"PeriodicalIF":0.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On b Q 1 $bQ_1$ -degrees of c.e. sets 在bQ1$bQ_1$- c集合的度数上
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-11-20 DOI: 10.1002/malq.202300033
Roland Omanadze, Irakli Chitaia
{"title":"On \u0000 \u0000 \u0000 b\u0000 \u0000 Q\u0000 1\u0000 \u0000 \u0000 $bQ_1$\u0000 -degrees of c.e. sets","authors":"Roland Omanadze,&nbsp;Irakli Chitaia","doi":"10.1002/malq.202300033","DOIUrl":"10.1002/malq.202300033","url":null,"abstract":"&lt;p&gt;Using properties of simple sets we study &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${bQ}_1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-degrees of c.e. sets. In particular, we prove: (1) If &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;annotation&gt;$B$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are c.e. sets, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a simple set and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Ale _{{bQ}_{1}}B$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, then there exists a simple set &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;annotation&gt;$C$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Cle _1 A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Cle _1 B$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. (2) the c.e. &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${bQ}_1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-degrees (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${bQ}_1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-degrees) do not form an up","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"64-72"},"PeriodicalIF":0.3,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The persistence principle over weak interpretability logic 弱可解释性逻辑的持久性原则
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-10-27 DOI: 10.1002/malq.202200020
Sohei Iwata, Taishi Kurahashi, Yuya Okawa
{"title":"The persistence principle over weak interpretability logic","authors":"Sohei Iwata,&nbsp;Taishi Kurahashi,&nbsp;Yuya Okawa","doi":"10.1002/malq.202200020","DOIUrl":"10.1002/malq.202200020","url":null,"abstract":"<p>We focus on the persistence principle over weak interpretability logic. Our object of study is the logic obtained by adding the persistence principle to weak interpretability logic from several perspectives. Firstly, we prove that this logic enjoys a weak version of the fixed point property. Secondly, we introduce a system of sequent calculus and prove the cut-elimination theorem for it. As a consequence, we prove that the logic enjoys the Craig interpolation property. Thirdly, we show that the logic is the natural basis of a generalization of simplified Veltman semantics, and prove that it has the finite frame property with respect to that semantics. Finally, we prove that it is sound and complete with respect to some appropriate arithmetical semantics.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"37-63"},"PeriodicalIF":0.3,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136317155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite Wordle and the mastermind numbers 无限世界和主谋数字
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-09-13 DOI: 10.1002/malq.202200049
Joel David Hamkins
{"title":"Infinite Wordle and the mastermind numbers","authors":"Joel David Hamkins","doi":"10.1002/malq.202200049","DOIUrl":"10.1002/malq.202200049","url":null,"abstract":"<p>I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of <i>n</i> letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in <i>n</i> steps. Meanwhile, the <i>mastermind number</i> <math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$mathbbm {m}$</annotation>\u0000 </semantics></math>, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length ω over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of <math>\u0000 <semantics>\u0000 <mi>ZFC</mi>\u0000 <annotation>$mathsf {ZFC}$</annotation>\u0000 </semantics></math>, for it is provably equal to the eventually different number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mo>≠</mo>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathfrak {d}({ne ^*})$</annotation>\u0000 </semantics></math>, which is the same as the covering number of the meager ideal <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mtext>cov</mtext>\u0000 </mrow>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$operatorname{mbox{cov}}(mathcal {M})$</annotation>\u0000 </semantics></math>. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"400-416"},"PeriodicalIF":0.3,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135783992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
When cardinals determine the power set: inner models and Härtig quantifier logic 当基数确定权力集时:内部模型和Härtig量词逻辑
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-09-11 DOI: 10.1002/malq.202200030
Jouko Väänänen, Philip D. Welch
{"title":"When cardinals determine the power set: inner models and Härtig quantifier logic","authors":"Jouko Väänänen,&nbsp;Philip D. Welch","doi":"10.1002/malq.202200030","DOIUrl":"10.1002/malq.202200030","url":null,"abstract":"<p>We show that the predicate “<i>x</i> <i>is the power set of</i> <i>y</i>” is <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Σ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>Card</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$Sigma _1(operatorname{Card})$</annotation>\u0000 </semantics></math>-definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here <math>\u0000 <semantics>\u0000 <mo>Card</mo>\u0000 <annotation>$operatorname{Card}$</annotation>\u0000 </semantics></math> is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <mi>I</mi>\u0000 </msub>\u0000 <annotation>$V_I$</annotation>\u0000 </semantics></math>, the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mi>I</mi>\u0000 </msub>\u0000 <annotation>$ell _{I}$</annotation>\u0000 </semantics></math>, the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mi>I</mi>\u0000 </msub>\u0000 <annotation>$ell _I$</annotation>\u0000 </semantics></math> is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"460-471"},"PeriodicalIF":0.3,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136024402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classification of low c.e. sets and the Ershov hierarchy 低ce集的分类和Ershov层次
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-09-11 DOI: 10.1002/malq.202300020
Marat Faizrahmanov
{"title":"A classification of low c.e. sets and the Ershov hierarchy","authors":"Marat Faizrahmanov","doi":"10.1002/malq.202300020","DOIUrl":"10.1002/malq.202300020","url":null,"abstract":"&lt;p&gt;In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ-levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ-level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;annotation&gt;$Sigma ^{-1}_{alpha }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;- and &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;annotation&gt;$Delta ^{-1}_{alpha }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-bound for every infinite computable ordinal α. It is known that jump traceability and superlowness coincide on the c.e. sets and we show that for every infinite computable ordinal α, jump traceability with &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;annotation&gt;$Sigma ^{-1}_{alpha }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;- or &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;annotation&gt;$Delta ^{-1}_{alpha }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-bound of a c.e. set &lt;i&gt;A&lt;/i&gt; is equivalent to the fact that &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$A^{prime }in Delta ^{-1}_{alpha }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Finally, we consider the generalized truth-table reducibilities &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;⩽&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"508-518"},"PeriodicalIF":0.3,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate isomorphism of metric structures 度量结构的近似同构
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-09-05 DOI: 10.1002/malq.202200076
James E. Hanson
{"title":"Approximate isomorphism of metric structures","authors":"James E. Hanson","doi":"10.1002/malq.202200076","DOIUrl":"10.1002/malq.202200076","url":null,"abstract":"<p>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach-Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two-sorted structures that witness approximate isomorphism. As an application, we show that the theory of any <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>-tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"482-507"},"PeriodicalIF":0.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84346103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Pregeometry over locally o-minimal structures and dimension 局部零最小结构和维数的预几何
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-30 DOI: 10.1002/malq.202200069
Masato Fujita
{"title":"Pregeometry over locally o-minimal structures and dimension","authors":"Masato Fujita","doi":"10.1002/malq.202200069","DOIUrl":"10.1002/malq.202200069","url":null,"abstract":"<p>We define a discrete closure operator for definably complete locally o-minimal structures <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math>. The pair of the underlying set of <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> and the discrete closure operator forms a pregeometry. We define the rank of a definable set over a set of parameters using this fact and call it <math>\u0000 <semantics>\u0000 <mo>discl</mo>\u0000 <annotation>$operatorname{discl}$</annotation>\u0000 </semantics></math>-dimension. A definable set <i>X</i> is of dimension equal to the <math>\u0000 <semantics>\u0000 <mo>discl</mo>\u0000 <annotation>$operatorname{discl}$</annotation>\u0000 </semantics></math>-dimension of <i>X</i>. The structure <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> is simultaneously a first-order topological structure. The dimension rank of a set definable in the first-order topological structure <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> also coincides with its dimension.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"472-481"},"PeriodicalIF":0.3,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76113023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信