Mathematical Logic Quarterly最新文献

筛选
英文 中文
A classification of low c.e. sets and the Ershov hierarchy 低ce集的分类和Ershov层次
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-09-11 DOI: 10.1002/malq.202300020
Marat Faizrahmanov
{"title":"A classification of low c.e. sets and the Ershov hierarchy","authors":"Marat Faizrahmanov","doi":"10.1002/malq.202300020","DOIUrl":"10.1002/malq.202300020","url":null,"abstract":"<p>In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ-levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ-level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>Σ</mi>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <annotation>$Sigma ^{-1}_{alpha }$</annotation>\u0000 </semantics></math>- and <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>Δ</mi>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <annotation>$Delta ^{-1}_{alpha }$</annotation>\u0000 </semantics></math>-bound for every infinite computable ordinal α. It is known that jump traceability and superlowness coincide on the c.e. sets and we show that for every infinite computable ordinal α, jump traceability with <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>Σ</mi>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <annotation>$Sigma ^{-1}_{alpha }$</annotation>\u0000 </semantics></math>- or <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>Δ</mi>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <annotation>$Delta ^{-1}_{alpha }$</annotation>\u0000 </semantics></math>-bound of a c.e. set <i>A</i> is equivalent to the fact that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <mo>∈</mo>\u0000 <msubsup>\u0000 <mi>Δ</mi>\u0000 <mi>α</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$A^{prime }in Delta ^{-1}_{alpha }$</annotation>\u0000 </semantics></math>. Finally, we consider the generalized truth-table reducibilities <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>⩽</mo>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mi>t</mi>\u0000 <mi>t</mi>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate isomorphism of metric structures 度量结构的近似同构
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-09-05 DOI: 10.1002/malq.202200076
James E. Hanson
{"title":"Approximate isomorphism of metric structures","authors":"James E. Hanson","doi":"10.1002/malq.202200076","DOIUrl":"10.1002/malq.202200076","url":null,"abstract":"<p>We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov [2] and by Ben Yaacov, Doucha, Nies, and Tsankov [6], which are largely incompatible. With this we explicitly exhibit Scott sentences for the perturbation systems of the former paper, such as the Banach-Mazur distance and the Lipschitz distance between metric spaces. Our formalism is simultaneously characterized syntactically by a mild generalization of perturbation systems and semantically by certain elementary classes of two-sorted structures that witness approximate isomorphism. As an application, we show that the theory of any <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>-tree or ultrametric space of finite radius is stable, improving a result of Carlisle and Henson [8].</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84346103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Pregeometry over locally o-minimal structures and dimension 局部零最小结构和维数的预几何
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-30 DOI: 10.1002/malq.202200069
Masato Fujita
{"title":"Pregeometry over locally o-minimal structures and dimension","authors":"Masato Fujita","doi":"10.1002/malq.202200069","DOIUrl":"10.1002/malq.202200069","url":null,"abstract":"<p>We define a discrete closure operator for definably complete locally o-minimal structures <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math>. The pair of the underlying set of <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> and the discrete closure operator forms a pregeometry. We define the rank of a definable set over a set of parameters using this fact and call it <math>\u0000 <semantics>\u0000 <mo>discl</mo>\u0000 <annotation>$operatorname{discl}$</annotation>\u0000 </semantics></math>-dimension. A definable set <i>X</i> is of dimension equal to the <math>\u0000 <semantics>\u0000 <mo>discl</mo>\u0000 <annotation>$operatorname{discl}$</annotation>\u0000 </semantics></math>-dimension of <i>X</i>. The structure <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> is simultaneously a first-order topological structure. The dimension rank of a set definable in the first-order topological structure <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> also coincides with its dimension.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76113023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: (Math. Log. Quart. 3/2023) 目录:(Math.Log.Quart.3/2023)
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-28 DOI: 10.1002/malq.202330001
{"title":"Contents: (Math. Log. Quart. 3/2023)","authors":"","doi":"10.1002/malq.202330001","DOIUrl":"https://doi.org/10.1002/malq.202330001","url":null,"abstract":"","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202330001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: (Math. Log. Quart. 2/2023) 目录:(Math.Log.Quart.2/2023)
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-11 DOI: 10.1002/malq.202320001
{"title":"Contents: (Math. Log. Quart. 2/2023)","authors":"","doi":"10.1002/malq.202320001","DOIUrl":"https://doi.org/10.1002/malq.202320001","url":null,"abstract":"","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202320001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50138137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bisimulations and bisimulation games between Verbrugge models Verbruge模型之间的互模拟和互模拟博弈
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-04 DOI: 10.1002/malq.202200042
Sebastijan Horvat, Tin Perkov, Mladen Vuković
{"title":"Bisimulations and bisimulation games between Verbrugge models","authors":"Sebastijan Horvat,&nbsp;Tin Perkov,&nbsp;Mladen Vuković","doi":"10.1002/malq.202200042","DOIUrl":"https://doi.org/10.1002/malq.202200042","url":null,"abstract":"<p>Interpretability logic is a modal formalization of relative interpretability between first-order arithmetical theories. Verbrugge semantics is a generalization of Veltman semantics, the basic semantics for interpretability logic. Bisimulation is the basic equivalence between models for modal logic. We study various notions of bisimulation between Verbrugge models and develop a new one, which we call w-bisimulation. We show that the new notion, while keeping the basic property that bisimilarity implies modal equivalence, is weak enough to allow the converse to hold in the finitary case. To do this, we develop and use an appropriate notion of bisimulation games between Verbrugge models.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50126665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The permutations with n non-fixed points and the subsets with n elements of a set 集合的n个非不动点的置换和n个元素的子集
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-04 DOI: 10.1002/malq.202300005
Supakun Panasawatwong, Pimpen Vejjajiva
{"title":"The permutations with n non-fixed points and the subsets with n elements of a set","authors":"Supakun Panasawatwong,&nbsp;Pimpen Vejjajiva","doi":"10.1002/malq.202300005","DOIUrl":"https://doi.org/10.1002/malq.202300005","url":null,"abstract":"<p>We write <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {S}_n(mathfrak {a})$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>a</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$[mathfrak {a}]^n$</annotation>\u0000 </semantics></math> for the cardinalities of the set of permutations with <i>n</i> non-fixed points and the set of subsets with <i>n</i> elements, respectively, of a set which is of cardinality <math>\u0000 <semantics>\u0000 <mi>a</mi>\u0000 <annotation>$mathfrak {a}$</annotation>\u0000 </semantics></math>, where <i>n</i> is a natural number greater than 1. With the Axiom of Choice, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {S}_n(mathfrak {a})$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>a</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$[mathfrak {a}]^n$</annotation>\u0000 </semantics></math> are equal for all infinite cardinals <math>\u0000 <semantics>\u0000 <mi>a</mi>\u0000 <annotation>$mathfrak {a}$</annotation>\u0000 </semantics></math>. We show, in <span>ZF</span>, that if <math>\u0000 <semantics>\u0000 <msub>\u0000 <mtext>AC</mtext>\u0000 <mrow>\u0000 <mo>≤</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$mbox{textsf {AC}}_{le n}$</annotation>\u0000 </semantics></math> is assumed, then <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>a</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>≤</mo>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50126677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a cardinal inequality in ZF $mathsf {ZF}$ 关于ZF $mathsf {ZF}$中的基数不等式
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-04 DOI: 10.1002/malq.202300014
Guozhen Shen
{"title":"On a cardinal inequality in \u0000 \u0000 ZF\u0000 $mathsf {ZF}$","authors":"Guozhen Shen","doi":"10.1002/malq.202300014","DOIUrl":"10.1002/malq.202300014","url":null,"abstract":"<p>It is proved in <math>\u0000 <semantics>\u0000 <mi>ZF</mi>\u0000 <annotation>$mathsf {ZF}$</annotation>\u0000 </semantics></math> (without the axiom of choice) that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>a</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>⩽</mo>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathfrak {a}^nleqslant mathcal {S}_{n+1}(mathfrak {a})$</annotation>\u0000 </semantics></math> for all infinite cardinals <math>\u0000 <semantics>\u0000 <mi>a</mi>\u0000 <annotation>$mathfrak {a}$</annotation>\u0000 </semantics></math> and all natural numbers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>≠</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$nne 0$</annotation>\u0000 </semantics></math>, where <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {S}_{n+1}(mathfrak {a})$</annotation>\u0000 </semantics></math> is the cardinality of the set of permutations with exactly <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$n+1$</annotation>\u0000 </semantics></math> non-fixed points of a set which is of cardinality <math>\u0000 <semantics>\u0000 <mi>a</mi>\u0000 <annotation>$mathfrak {a}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87237651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Borel complexity and Ramsey largeness of sets of oracles separating complexity classes 复杂度类分离神谕集的Borel复杂性和Ramsey大性
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-02 DOI: 10.1002/malq.202200068
Alex Creiner, Stephen Jackson
{"title":"Borel complexity and Ramsey largeness of sets of oracles separating complexity classes","authors":"Alex Creiner,&nbsp;Stephen Jackson","doi":"10.1002/malq.202200068","DOIUrl":"https://doi.org/10.1002/malq.202200068","url":null,"abstract":"<p>We prove two sets of results concerning computational complexity classes. First, we propose a new variation of the random oracle hypothesis, originally posed by Bennett and Gill after they showed that relative to a randomly chosen oracle, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>≠</mo>\u0000 <mi>NP</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {P}ne mathbf {NP}$</annotation>\u0000 </semantics></math> with probability 1. Their original hypothesis was quickly disproven in several ways, most famously in 1992 with the result that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>IP</mi>\u0000 <mo>=</mo>\u0000 <mi>PSPACE</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {IP} = mathbf {PSPACE}$</annotation>\u0000 </semantics></math>, in spite of the classes being shown unequal with probability 1. Here we propose a variation of what it means to be “large” using the Ellentuck topology. In this new context, we demonstrate that the set of oracles separating <math>\u0000 <semantics>\u0000 <mi>NP</mi>\u0000 <annotation>$mathbf {NP}$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>co</mi>\u0000 <mi>-</mi>\u0000 <mi>NP</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {co}text{-}mathbf {NP}$</annotation>\u0000 </semantics></math> is not small, and obtain similar results for the separation of <math>\u0000 <semantics>\u0000 <mi>PSPACE</mi>\u0000 <annotation>$mathbf {PSPACE}$</annotation>\u0000 </semantics></math> from <math>\u0000 <semantics>\u0000 <mi>PH</mi>\u0000 <annotation>$mathbf {PH}$</annotation>\u0000 </semantics></math> along with the separation of <math>\u0000 <semantics>\u0000 <mi>NP</mi>\u0000 <annotation>$mathbf {NP}$</annotation>\u0000 </semantics></math> from <math>\u0000 <semantics>\u0000 <mi>BQP</mi>\u0000 <annotation>$mathbf {BQP}$</annotation>\u0000 </semantics></math>. We also show that the set of oracles <i>equating</i> <math>\u0000 <semantics>\u0000 <mi>IP</mi>\u0000 <annotation>$mathbf {IP}$</annotation>\u0000 </semantics></math> with <math>\u0000 <semantics>\u0000 <mi>PSPACE</mi>\u0000 <annotation>$mathbf {PSPACE}$</annotation>\u0000 </semantics></math> is large in this new sense. We demonstrate that this version of the hypothesis provides a sufficient condition for unrelativized relationships, at least in the cases considered here. Second, we examine the descriptive complexity of the classes of oracles providing the separations for these various classes, and determine their exact placement in the Borel hierarchy.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50128497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On self-distributive weak Heyting algebras 关于自分配弱Heyting代数
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2023-08-02 DOI: 10.1002/malq.202200073
Mohsen Nourany, Shokoofeh Ghorbani, Arsham Borumand Saeid
{"title":"On self-distributive weak Heyting algebras","authors":"Mohsen Nourany,&nbsp;Shokoofeh Ghorbani,&nbsp;Arsham Borumand Saeid","doi":"10.1002/malq.202200073","DOIUrl":"https://doi.org/10.1002/malq.202200073","url":null,"abstract":"<p>We use the left self-distributive axiom to introduce and study a special class of weak Heyting algebras, called self-distributive weak Heyting algebras (SDWH-algebras). We present some useful properties of SDWH-algebras and obtain some equivalent conditions of them. A characteristic of SDWH-algebras of orders 3 and 4 is given. Finally, we study the relation between the variety of SDWH-algebras and some of the known subvarieties of weak Heyting algebras such as the variety of Heyting algebras, the variety of basic algebras, the variety of subresiduated lattices, the variety of reflexive WH-algebras (RWH-algebras), and the variety of transitive WH-algebras (TWH-algebras).</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50117486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信