{"title":"A property of forcing notions and preservation of cardinal invariants","authors":"Yushiro Aoki","doi":"10.1002/malq.202300013","DOIUrl":"10.1002/malq.202300013","url":null,"abstract":"<p>We define a property of forcing notions and show that there exists a model of its forcing axiom and the negation of the continuum hypothesis in which the Cichoń-Blass diagram of cardinal invariants is the same as in the Cohen model. As a corollary, its forcing axiom and the forcing axiom for <span></span><math>\u0000 <semantics>\u0000 <mi>σ</mi>\u0000 <annotation>$sigma$</annotation>\u0000 </semantics></math>-centered forcing notions are independent of each other.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"73-78"},"PeriodicalIF":0.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinitary logic with infinite sequents: syntactic investigations","authors":"Matteo Tesi","doi":"10.1002/malq.202300011","DOIUrl":"10.1002/malq.202300011","url":null,"abstract":"<p>The present paper deals with a purely syntactic analysis of infinitary logic with infinite sequents. In particular, we discuss sequent calculi for classical and intuitionistic infinitary logic with good structural properties based on sequents possibly containing infinitely many formulas. A cut admissibility proof is proposed which employs a new strategy and a new inductive parameter. We conclude the paper by discussing related issues and possible themes for future research.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"79-98"},"PeriodicalIF":0.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A dichotomy for \u0000 \u0000 T\u0000 $T$\u0000 -convex fields with a monomial group","authors":"Elliot Kaplan, Christoph Kesting","doi":"10.1002/malq.202300017","DOIUrl":"10.1002/malq.202300017","url":null,"abstract":"<p>We prove a dichotomy for o-minimal fields <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math>, expanded by a <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math>-convex valuation ring (where <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is the theory of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math>) and a compatible monomial group. We show that if <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is power bounded, then this expansion of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math> is model complete (assuming that <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is), it has a distal theory, and the definable sets are geometrically tame. On the other hand, if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math> defines an exponential function, then the natural numbers are externally definable in our expansion, precluding any sort of model-theoretic tameness.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"99-110"},"PeriodicalIF":0.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}