A classification of low c.e. sets and the Ershov hierarchy

Pub Date : 2023-09-11 DOI:10.1002/malq.202300020
Marat Faizrahmanov
{"title":"A classification of low c.e. sets and the Ershov hierarchy","authors":"Marat Faizrahmanov","doi":"10.1002/malq.202300020","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ-levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ-level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mi>α</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <annotation>$\\Sigma ^{-1}_{\\alpha }$</annotation>\n </semantics></math>- and <math>\n <semantics>\n <msubsup>\n <mi>Δ</mi>\n <mi>α</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <annotation>$\\Delta ^{-1}_{\\alpha }$</annotation>\n </semantics></math>-bound for every infinite computable ordinal α. It is known that jump traceability and superlowness coincide on the c.e. sets and we show that for every infinite computable ordinal α, jump traceability with <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mi>α</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <annotation>$\\Sigma ^{-1}_{\\alpha }$</annotation>\n </semantics></math>- or <math>\n <semantics>\n <msubsup>\n <mi>Δ</mi>\n <mi>α</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <annotation>$\\Delta ^{-1}_{\\alpha }$</annotation>\n </semantics></math>-bound of a c.e. set <i>A</i> is equivalent to the fact that <math>\n <semantics>\n <mrow>\n <msup>\n <mi>A</mi>\n <mo>′</mo>\n </msup>\n <mo>∈</mo>\n <msubsup>\n <mi>Δ</mi>\n <mi>α</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$A^{\\prime }\\in \\Delta ^{-1}_{\\alpha }$</annotation>\n </semantics></math>. Finally, we consider the generalized truth-table reducibilities <math>\n <semantics>\n <msub>\n <mo>⩽</mo>\n <mrow>\n <mi>g</mi>\n <mi>t</mi>\n <mi>t</mi>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$\\leqslant _{gtt(\\alpha )}$</annotation>\n </semantics></math> and prove that for every (not necessarily the Turing jump of a c.e. set) set <i>A</i> and every limit computable ordinal α, <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>∈</mo>\n <msubsup>\n <mi>Δ</mi>\n <mi>α</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$A\\in \\Delta ^{-1}_{\\alpha }$</annotation>\n </semantics></math> iff <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <msub>\n <mo>⩽</mo>\n <mrow>\n <mi>g</mi>\n <mi>t</mi>\n <mi>t</mi>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <msup>\n <mi>⌀</mi>\n <mo>′</mo>\n </msup>\n </mrow>\n <annotation>$A\\leqslant _{gtt(\\alpha )}\\varnothing ^{\\prime }$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ-levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ-level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with Σ α 1 $\Sigma ^{-1}_{\alpha }$ - and Δ α 1 $\Delta ^{-1}_{\alpha }$ -bound for every infinite computable ordinal α. It is known that jump traceability and superlowness coincide on the c.e. sets and we show that for every infinite computable ordinal α, jump traceability with Σ α 1 $\Sigma ^{-1}_{\alpha }$ - or Δ α 1 $\Delta ^{-1}_{\alpha }$ -bound of a c.e. set A is equivalent to the fact that A Δ α 1 $A^{\prime }\in \Delta ^{-1}_{\alpha }$ . Finally, we consider the generalized truth-table reducibilities g t t ( α ) $\leqslant _{gtt(\alpha )}$ and prove that for every (not necessarily the Turing jump of a c.e. set) set A and every limit computable ordinal α, A Δ α 1 $A\in \Delta ^{-1}_{\alpha }$ iff A g t t ( α ) $A\leqslant _{gtt(\alpha )}\varnothing ^{\prime }$ .

分享
查看原文
低ce集的分类和Ershov层次
本文证明了低c.e.集的图灵跳跃的几个结果。我们证明了只有Ershov层次的Δ-levels可以适当地包含c.e.集的图灵跳跃,并且存在一个任意大的可计算序数,其正规符号使得对应的Δ-level适合于某些c.e.集的图灵跳跃。接下来,我们将跳跃可追溯性的概念推广到Σ α−1的跳跃可追溯性 $\Sigma ^{-1}_{\alpha }$ -和Δ α−1 $\Delta ^{-1}_{\alpha }$ -界对于每一个无限可计算序数α。已知跳跃可溯性和超低性在c.e.集合上重合,并证明了对于每一个无限可计算序数α,跳跃可溯性为Σ α−1 $\Sigma ^{-1}_{\alpha }$ -或Δ α−1 $\Delta ^{-1}_{\alpha }$ 一个c.e.集合a的-界等价于a '∈Δ α−1 $A^{\prime }\in \Delta ^{-1}_{\alpha }$ . 最后,我们考虑了广义真值表的可约性≤g t t (α) $\leqslant _{gtt(\alpha )}$ 并证明对于每一个集合a(不一定是c.e.集合的图灵跳跃)和每一个极限可计算序数α, a∈Δ α−1 $A\in \Delta ^{-1}_{\alpha }$ iff A≤g t t (α)∑' $A\leqslant _{gtt(\alpha )}\varnothing ^{\prime }$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信