Mathematical Logic Quarterly最新文献

筛选
英文 中文
Adding a constant and an axiom to a doctrine 为学说添加常数和公理
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-10-08 DOI: 10.1002/malq.202300053
Francesca Guffanti
{"title":"Adding a constant and an axiom to a doctrine","authors":"Francesca Guffanti","doi":"10.1002/malq.202300053","DOIUrl":"https://doi.org/10.1002/malq.202300053","url":null,"abstract":"<p>We study the meaning of “adding a constant to a language” for any doctrine, and “adding an axiom to a theory” for a primary doctrine, by showing how these are actually two instances of the same construction. We prove their universal properties, and how these constructions are compatible with additional structure on the doctrine. Existence of Kleisli object for comonads in the 2-category of indexed poset is proved in order to build these constructions.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The set of injections and the set of surjections on a set 注入集合和射出集
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-09-16 DOI: 10.1002/malq.202300059
Natthajak Kamkru, Nattapon Sonpanow
{"title":"The set of injections and the set of surjections on a set","authors":"Natthajak Kamkru,&nbsp;Nattapon Sonpanow","doi":"10.1002/malq.202300059","DOIUrl":"https://doi.org/10.1002/malq.202300059","url":null,"abstract":"&lt;p&gt;In this paper, we investigate the relationships between the cardinalities of the set of injections, the set of surjections, and the set of all functions on a set which is of cardinality &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathfrak {m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, denoted by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$I(mathfrak {m})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$J(mathfrak {m})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathfrak {m}^mathfrak {m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, respectively. Among our results, we show that “&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;seq&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 &lt;mo&gt;seq&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$operatorname{seq}^{1-1}(mathfrak {m})ne I(mathfrak {m})ne operatorname{seq}(mathfrak {m})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;”, “&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;seq&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;≠&lt;/","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Walker's cancellation theorem 沃克取消定理的有效性
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-09-13 DOI: 10.1002/malq.202400030
Layth Al-Hellawi, Rachael Alvir, Barbara F. Csima, Xinyue Xie
{"title":"Effectiveness of Walker's cancellation theorem","authors":"Layth Al-Hellawi,&nbsp;Rachael Alvir,&nbsp;Barbara F. Csima,&nbsp;Xinyue Xie","doi":"10.1002/malq.202400030","DOIUrl":"10.1002/malq.202400030","url":null,"abstract":"&lt;p&gt;Walker's cancellation theorem for abelian groups tells us that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is finitely generated and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;≅&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$A oplus G cong A oplus H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;≅&lt;/mo&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G cong H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Deveau showed that the theorem can be effectivized, but not uniformly. In this paper, we expand on Deveau's initial analysis to show that the complexity of uniformly outputting an index of an isomorphism between &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, given indices for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the isomorphism between &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$A oplus G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$A oplus H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and the rank of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202400030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Good points for scales (and more) 天平的优点(以及更多)
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-09-09 DOI: 10.1002/malq.202300034
Pierre Matet
{"title":"Good points for scales (and more)","authors":"Pierre Matet","doi":"10.1002/malq.202300034","DOIUrl":"10.1002/malq.202300034","url":null,"abstract":"<p>Given a scale (in the sense of Shelah's pcf theory), we list various conditions ensuring that a given point is good for the scale.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial correction for L. Halbeisen, R. Plati, and Saharon Shelah, “Implications of Ramsey Choice principles in ZF $mathsf {ZF}$ ”, https://doi.org/10.1002/malq.202300024 对 L. Halbeisen、R. Plati 和 Saharon Shelah "拉姆齐选择原则在 ZF$mathsf {ZF}$ 中的影响 "的编辑更正,https://doi.org/10.1002/malq.202300024。
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-09-09 DOI: 10.1002/malq.202430002
{"title":"Editorial correction for L. Halbeisen, R. Plati, and Saharon Shelah, “Implications of Ramsey Choice principles in \u0000 \u0000 ZF\u0000 $mathsf {ZF}$\u0000 ”, https://doi.org/10.1002/malq.202300024","authors":"","doi":"10.1002/malq.202430002","DOIUrl":"10.1002/malq.202430002","url":null,"abstract":"<p>The numbers of corollaries and propositions in the proof of Theorem 3.8 on p. 260 in the article <i>Implications of Ramsey Choice principles in</i> <span></span><math>\u0000 <semantics>\u0000 <mi>ZF</mi>\u0000 <annotation>$mathsf {ZF}$</annotation>\u0000 </semantics></math> by Lorenz Halbeisen, Riccardo Plati, and Saharon Shelah (doi: 10.1002/malq.202300024) are incorrect. The correct numbers are given here:</p><p>August 2024</p><p>The MLQ Editorial Office</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202430002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wadge degrees of Δ 2 0 $mathbf{Delta }^0_2$ omega-powers Δ20$mathbf{Delta }^0_2$ Ω-幂的瓦奇度
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-09-06 DOI: 10.1002/malq.202400024
Olivier Finkel, Dominique Lecomte
{"title":"Wadge degrees of \u0000 \u0000 \u0000 Δ\u0000 2\u0000 0\u0000 \u0000 $mathbf{Delta }^0_2$\u0000 omega-powers","authors":"Olivier Finkel,&nbsp;Dominique Lecomte","doi":"10.1002/malq.202400024","DOIUrl":"10.1002/malq.202400024","url":null,"abstract":"&lt;p&gt;We provide, for each natural number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and each class among &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$D_n(mathbf {Sigma }^0_1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;̌&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$check{D}_n(mathbf {Sigma }^0_1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;⊕&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;̌&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$D_{2n+1}(mathbf {Sigma }^0_1)oplus check{D}_{2n+1}(mathbf {Sigma }^0_1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, a regular language whose ass","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: (Math. Log. Quart. 2/2024) 内容:(数学逻辑学季刊》第 2/2024 期)
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-23 DOI: 10.1002/malq.202470022
{"title":"Contents: (Math. Log. Quart. 2/2024)","authors":"","doi":"10.1002/malq.202470022","DOIUrl":"10.1002/malq.202470022","url":null,"abstract":"","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202470022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups 邻最小结构和半代数群中可定义局部同态的扩展
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-17 DOI: 10.1002/malq.202300028
Eliana Barriga
{"title":"Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups","authors":"Eliana Barriga","doi":"10.1002/malq.202300028","DOIUrl":"10.1002/malq.202300028","url":null,"abstract":"&lt;p&gt;We state conditions for which a definable local homomorphism between two locally definable groups &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {G}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathcal {G^{prime }}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; can be uniquely extended when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {G}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; not necessarily abelian over a sufficiently saturated real closed field &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;annotation&gt;$R$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;; namely, that the o-minimal universal covering group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;∼&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;annotation&gt;$widetilde{G}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is an open locally definable subgroup of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mover&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;∼&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;annotation&gt;$widetilde{H(R)^{0}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for some &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;annotation&gt;$R$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-algebraic group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hartogs–Lindenbaum spectrum of symmetric extensions 对称扩展的哈托格-林登鲍姆谱
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-16 DOI: 10.1002/malq.202300047
Calliope Ryan-Smith
{"title":"The Hartogs–Lindenbaum spectrum of symmetric extensions","authors":"Calliope Ryan-Smith","doi":"10.1002/malq.202300047","DOIUrl":"10.1002/malq.202300047","url":null,"abstract":"<p>We expand the classic result that <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>AC</mi>\u0000 <mi>WO</mi>\u0000 </msub>\u0000 <annotation>$mathsf {AC}_mathsf {WO}$</annotation>\u0000 </semantics></math> is equivalent to the statement “For all <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℵ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>ℵ</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$aleph (X)=aleph ^*(X)$</annotation>\u0000 </semantics></math>” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of <span></span><math>\u0000 <semantics>\u0000 <mi>ZF</mi>\u0000 <annotation>$mathsf {ZF}$</annotation>\u0000 </semantics></math>, and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of <span></span><math>\u0000 <semantics>\u0000 <mi>ZFC</mi>\u0000 <annotation>$mathsf {ZFC}$</annotation>\u0000 </semantics></math>. We prove that all such spectra fall into a very rigid pattern.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filter-Menger set of reals in Cohen extensions 科恩扩展中的滤门格尔实数集
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-15 DOI: 10.1002/malq.202300008
Hang Zhang, Shuguo Zhang
{"title":"Filter-Menger set of reals in Cohen extensions","authors":"Hang Zhang,&nbsp;Shuguo Zhang","doi":"10.1002/malq.202300008","DOIUrl":"10.1002/malq.202300008","url":null,"abstract":"<p>We prove that for every ultrafilter <span></span><math>\u0000 <semantics>\u0000 <mi>U</mi>\u0000 <annotation>$mathcal {U}$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mi>ω</mi>\u0000 <annotation>$omega$</annotation>\u0000 </semantics></math> there exists a filter <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$mathcal {F}$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mrow>\u0000 <mo>&lt;</mo>\u0000 <mi>ω</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$2^{&amp;lt;omega }$</annotation>\u0000 </semantics></math> which is <span></span><math>\u0000 <semantics>\u0000 <mi>U</mi>\u0000 <annotation>$mathcal {U}$</annotation>\u0000 </semantics></math>-Menger and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 <mo>(</mo>\u0000 <mi>F</mi>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mi>b</mi>\u0000 <mo>(</mo>\u0000 <mi>U</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$chi (mathcal {F})=mathfrak {b}(mathcal {U})$</annotation>\u0000 </semantics></math>. We show that in the Cohen model there exists such <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$mathcal {F}$</annotation>\u0000 </semantics></math> which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$mathfrak {d}$</annotation>\u0000 </semantics></math> that is not Hurewicz in the <span></span><math>\u0000 <semantics>\u0000 <mi>κ</mi>\u0000 <annotation>$kappa$</annotation>\u0000 </semantics></math>-Cohen model where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>κ</mi>\u0000 <mo>&gt;</mo>\u0000 <msub>\u0000 <mi>ω</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$kappa &amp;gt;omega _{1}$</annotation>\u0000 </semantics></math> is uncountable regular. This shows that the positive answer to a question of Hernández-Gutiérrez and Szeptycki [3, Question 2.8] is consistent with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 <mo>&lt;</mo>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation>$mathfrak {b}&amp;lt;mathfrak {d}$</annotation>\u0000 </se","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信