{"title":"Adding a constant and an axiom to a doctrine","authors":"Francesca Guffanti","doi":"10.1002/malq.202300053","DOIUrl":"https://doi.org/10.1002/malq.202300053","url":null,"abstract":"<p>We study the meaning of “adding a constant to a language” for any doctrine, and “adding an axiom to a theory” for a primary doctrine, by showing how these are actually two instances of the same construction. We prove their universal properties, and how these constructions are compatible with additional structure on the doctrine. Existence of Kleisli object for comonads in the 2-category of indexed poset is proved in order to build these constructions.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The set of injections and the set of surjections on a set","authors":"Natthajak Kamkru, Nattapon Sonpanow","doi":"10.1002/malq.202300059","DOIUrl":"https://doi.org/10.1002/malq.202300059","url":null,"abstract":"<p>In this paper, we investigate the relationships between the cardinalities of the set of injections, the set of surjections, and the set of all functions on a set which is of cardinality <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$mathfrak {m}$</annotation>\u0000 </semantics></math>, denoted by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>I</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$I(mathfrak {m})$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>J</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$J(mathfrak {m})$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>m</mi>\u0000 <mi>m</mi>\u0000 </msup>\u0000 <annotation>$mathfrak {m}^mathfrak {m}$</annotation>\u0000 </semantics></math>, respectively. Among our results, we show that “<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mo>seq</mo>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≠</mo>\u0000 <mi>I</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≠</mo>\u0000 <mo>seq</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$operatorname{seq}^{1-1}(mathfrak {m})ne I(mathfrak {m})ne operatorname{seq}(mathfrak {m})$</annotation>\u0000 </semantics></math>”, “<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mo>seq</mo>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≠</mo>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≠</","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Layth Al-Hellawi, Rachael Alvir, Barbara F. Csima, Xinyue Xie
{"title":"Effectiveness of Walker's cancellation theorem","authors":"Layth Al-Hellawi, Rachael Alvir, Barbara F. Csima, Xinyue Xie","doi":"10.1002/malq.202400030","DOIUrl":"10.1002/malq.202400030","url":null,"abstract":"<p>Walker's cancellation theorem for abelian groups tells us that if <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> is finitely generated and <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$H$</annotation>\u0000 </semantics></math> are such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mi>⊕</mi>\u0000 <mi>G</mi>\u0000 <mo>≅</mo>\u0000 <mi>A</mi>\u0000 <mi>⊕</mi>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation>$A oplus G cong A oplus H$</annotation>\u0000 </semantics></math>, then <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>≅</mo>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation>$G cong H$</annotation>\u0000 </semantics></math>. Deveau showed that the theorem can be effectivized, but not uniformly. In this paper, we expand on Deveau's initial analysis to show that the complexity of uniformly outputting an index of an isomorphism between <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$H$</annotation>\u0000 </semantics></math>, given indices for <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$H$</annotation>\u0000 </semantics></math>, the isomorphism between <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mi>⊕</mi>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$A oplus G$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mi>⊕</mi>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation>$A oplus H$</annotation>\u0000 </semantics></math>, and the rank of <span></span><math>\u0000 <semantics>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202400030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Good points for scales (and more)","authors":"Pierre Matet","doi":"10.1002/malq.202300034","DOIUrl":"10.1002/malq.202300034","url":null,"abstract":"<p>Given a scale (in the sense of Shelah's pcf theory), we list various conditions ensuring that a given point is good for the scale.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial correction for L. Halbeisen, R. Plati, and Saharon Shelah, “Implications of Ramsey Choice principles in \u0000 \u0000 ZF\u0000 $mathsf {ZF}$\u0000 ”, https://doi.org/10.1002/malq.202300024","authors":"","doi":"10.1002/malq.202430002","DOIUrl":"10.1002/malq.202430002","url":null,"abstract":"<p>The numbers of corollaries and propositions in the proof of Theorem 3.8 on p. 260 in the article <i>Implications of Ramsey Choice principles in</i> <span></span><math>\u0000 <semantics>\u0000 <mi>ZF</mi>\u0000 <annotation>$mathsf {ZF}$</annotation>\u0000 </semantics></math> by Lorenz Halbeisen, Riccardo Plati, and Saharon Shelah (doi: 10.1002/malq.202300024) are incorrect. The correct numbers are given here:</p><p>August 2024</p><p>The MLQ Editorial Office</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202430002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}