{"title":"命题之间的分离关系","authors":"Zoltan A. Kocsis","doi":"10.1002/malq.202300055","DOIUrl":null,"url":null,"abstract":"<p>We classify all apartness relations definable in propositional logics extending intuitionistic logic using Heyting algebra semantics. We show that every Heyting algebra which contains a non-trivial apartness term satisfies the weak law of excluded middle, and every Heyting algebra which contains a tight apartness term is in fact a Boolean algebra. This answers a question of Rijke regarding the correct notion of apartness for propositions, and yields a short classification of apartness terms that can occur in a Heyting algebra. We also show that Martin-Löf Type Theory is not able to construct non-trivial apartness relations between propositions.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"414-428"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apartness relations between propositions\",\"authors\":\"Zoltan A. Kocsis\",\"doi\":\"10.1002/malq.202300055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We classify all apartness relations definable in propositional logics extending intuitionistic logic using Heyting algebra semantics. We show that every Heyting algebra which contains a non-trivial apartness term satisfies the weak law of excluded middle, and every Heyting algebra which contains a tight apartness term is in fact a Boolean algebra. This answers a question of Rijke regarding the correct notion of apartness for propositions, and yields a short classification of apartness terms that can occur in a Heyting algebra. We also show that Martin-Löf Type Theory is not able to construct non-trivial apartness relations between propositions.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 4\",\"pages\":\"414-428\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300055\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
We classify all apartness relations definable in propositional logics extending intuitionistic logic using Heyting algebra semantics. We show that every Heyting algebra which contains a non-trivial apartness term satisfies the weak law of excluded middle, and every Heyting algebra which contains a tight apartness term is in fact a Boolean algebra. This answers a question of Rijke regarding the correct notion of apartness for propositions, and yields a short classification of apartness terms that can occur in a Heyting algebra. We also show that Martin-Löf Type Theory is not able to construct non-trivial apartness relations between propositions.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.