严格稳定抽象初等类的极限模型

IF 0.4 4区 数学 Q4 LOGIC
Will Boney, Monica M. VanDieren
{"title":"严格稳定抽象初等类的极限模型","authors":"Will Boney,&nbsp;Monica M. VanDieren","doi":"10.1002/malq.202200075","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we examine the locality condition for non-splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathcal {K}$</annotation>\n </semantics></math> is an abstract elementary class satisfying\n\n </p><p>Then for <span></span><math>\n <semantics>\n <mi>ϑ</mi>\n <annotation>$\\vartheta$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math> limit ordinals <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>μ</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$&lt;\\mu ^+$</annotation>\n </semantics></math> both with cofinality <span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <msubsup>\n <mi>κ</mi>\n <mi>μ</mi>\n <mo>∗</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ge \\kappa ^*_\\mu (\\mathcal {K})$</annotation>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathcal {K}$</annotation>\n </semantics></math> satisfies symmetry for <span></span><math>\n <semantics>\n <mrow>\n <mi>non</mi>\n <mi>-</mi>\n <mi>μ</mi>\n <mi>-</mi>\n <mi>splitting</mi>\n </mrow>\n <annotation>${\\rm non}\\text{-}\\mu\\text{-}{\\rm splitting}$</annotation>\n </semantics></math> (or just <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mu,\\delta)$</annotation>\n </semantics></math>-symmetry), then, for any <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>1</mn>\n </msub>\n <annotation>$M_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n <annotation>$M_2$</annotation>\n </semantics></math> that are <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>ϑ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mu,\\vartheta)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mu,\\delta)$</annotation>\n </semantics></math>-limit models over <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>0</mn>\n </msub>\n <annotation>$M_0$</annotation>\n </semantics></math>, respectively, we have that <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>1</mn>\n </msub>\n <annotation>$M_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n <annotation>$M_2$</annotation>\n </semantics></math> are isomorphic over <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>0</mn>\n </msub>\n <annotation>$M_0$</annotation>\n </semantics></math>. Note that no tameness is assumed.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"438-453"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200075","citationCount":"0","resultStr":"{\"title\":\"Limit models in strictly stable abstract elementary classes\",\"authors\":\"Will Boney,&nbsp;Monica M. VanDieren\",\"doi\":\"10.1002/malq.202200075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we examine the locality condition for non-splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathcal {K}$</annotation>\\n </semantics></math> is an abstract elementary class satisfying\\n\\n </p><p>Then for <span></span><math>\\n <semantics>\\n <mi>ϑ</mi>\\n <annotation>$\\\\vartheta$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>δ</mi>\\n <annotation>$\\\\delta$</annotation>\\n </semantics></math> limit ordinals <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>μ</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$&lt;\\\\mu ^+$</annotation>\\n </semantics></math> both with cofinality <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≥</mo>\\n <msubsup>\\n <mi>κ</mi>\\n <mi>μ</mi>\\n <mo>∗</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\ge \\\\kappa ^*_\\\\mu (\\\\mathcal {K})$</annotation>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathcal {K}$</annotation>\\n </semantics></math> satisfies symmetry for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>non</mi>\\n <mi>-</mi>\\n <mi>μ</mi>\\n <mi>-</mi>\\n <mi>splitting</mi>\\n </mrow>\\n <annotation>${\\\\rm non}\\\\text{-}\\\\mu\\\\text{-}{\\\\rm splitting}$</annotation>\\n </semantics></math> (or just <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mu,\\\\delta)$</annotation>\\n </semantics></math>-symmetry), then, for any <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$M_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$M_2$</annotation>\\n </semantics></math> that are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>ϑ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mu,\\\\vartheta)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mu,\\\\delta)$</annotation>\\n </semantics></math>-limit models over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$M_0$</annotation>\\n </semantics></math>, respectively, we have that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$M_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$M_2$</annotation>\\n </semantics></math> are isomorphic over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$M_0$</annotation>\\n </semantics></math>. Note that no tameness is assumed.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 4\",\"pages\":\"438-453\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200075\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非分裂的局部性条件,并确定了在稳定但非超稳定的抽象初等类中可以恢复的极限模型的唯一性水平。我们特别证明了以下几点。假设K $\mathcal {K}$ 一个抽象的初等类是否满足Then $\vartheta$ δ $\delta$ 极限序数&lt;μ + $<\mu ^+$ 均具有合度≥κ μ∗(K) $\ge \kappa ^*_\mu (\mathcal {K})$ ,如果K $\mathcal {K}$ 满足非μ分裂的对称性 ${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (或只是(μ, δ) $(\mu,\delta)$ -对称),然后,对于任何m1 $M_1$ 和m2 $M_2$ 即(μ,) $(\mu,\vartheta)$ 和(μ, δ) $(\mu,\delta)$ - m0以上的极限模型 $M_0$ 分别得到m1 $M_1$ 和m2 $M_2$ 在m0上是同构的 $M_0$ . 注意,这里没有假设驯服性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Limit models in strictly stable abstract elementary classes

Limit models in strictly stable abstract elementary classes

In this paper, we examine the locality condition for non-splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that K $\mathcal {K}$ is an abstract elementary class satisfying

Then for ϑ $\vartheta$ and δ $\delta$ limit ordinals < μ + $<\mu ^+$ both with cofinality κ μ ( K ) $\ge \kappa ^*_\mu (\mathcal {K})$ , if K $\mathcal {K}$ satisfies symmetry for non - μ - splitting ${\rm non}\text{-}\mu\text{-}{\rm splitting}$ (or just ( μ , δ ) $(\mu,\delta)$ -symmetry), then, for any M 1 $M_1$ and M 2 $M_2$ that are ( μ , ϑ ) $(\mu,\vartheta)$ and ( μ , δ ) $(\mu,\delta)$ -limit models over M 0 $M_0$ , respectively, we have that M 1 $M_1$ and M 2 $M_2$ are isomorphic over M 0 $M_0$ . Note that no tameness is assumed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信