Will Boney, Monica M. VanDieren
下载PDF
{"title":"严格稳定抽象初等类的极限模型","authors":"Will Boney, Monica M. VanDieren","doi":"10.1002/malq.202200075","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we examine the locality condition for non-splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathcal {K}$</annotation>\n </semantics></math> is an abstract elementary class satisfying\n\n </p><p>Then for <span></span><math>\n <semantics>\n <mi>ϑ</mi>\n <annotation>$\\vartheta$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math> limit ordinals <span></span><math>\n <semantics>\n <mrow>\n <mo><</mo>\n <msup>\n <mi>μ</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$<\\mu ^+$</annotation>\n </semantics></math> both with cofinality <span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <msubsup>\n <mi>κ</mi>\n <mi>μ</mi>\n <mo>∗</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ge \\kappa ^*_\\mu (\\mathcal {K})$</annotation>\n </semantics></math>, if <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathcal {K}$</annotation>\n </semantics></math> satisfies symmetry for <span></span><math>\n <semantics>\n <mrow>\n <mi>non</mi>\n <mi>-</mi>\n <mi>μ</mi>\n <mi>-</mi>\n <mi>splitting</mi>\n </mrow>\n <annotation>${\\rm non}\\text{-}\\mu\\text{-}{\\rm splitting}$</annotation>\n </semantics></math> (or just <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mu,\\delta)$</annotation>\n </semantics></math>-symmetry), then, for any <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>1</mn>\n </msub>\n <annotation>$M_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n <annotation>$M_2$</annotation>\n </semantics></math> that are <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>ϑ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mu,\\vartheta)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>μ</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mu,\\delta)$</annotation>\n </semantics></math>-limit models over <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>0</mn>\n </msub>\n <annotation>$M_0$</annotation>\n </semantics></math>, respectively, we have that <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>1</mn>\n </msub>\n <annotation>$M_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n <annotation>$M_2$</annotation>\n </semantics></math> are isomorphic over <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>0</mn>\n </msub>\n <annotation>$M_0$</annotation>\n </semantics></math>. Note that no tameness is assumed.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"438-453"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200075","citationCount":"0","resultStr":"{\"title\":\"Limit models in strictly stable abstract elementary classes\",\"authors\":\"Will Boney, Monica M. VanDieren\",\"doi\":\"10.1002/malq.202200075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we examine the locality condition for non-splitting and determine the level of uniqueness of limit models that can be recovered in some stable, but not superstable, abstract elementary classes. In particular we prove the following. Suppose that <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathcal {K}$</annotation>\\n </semantics></math> is an abstract elementary class satisfying\\n\\n </p><p>Then for <span></span><math>\\n <semantics>\\n <mi>ϑ</mi>\\n <annotation>$\\\\vartheta$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>δ</mi>\\n <annotation>$\\\\delta$</annotation>\\n </semantics></math> limit ordinals <span></span><math>\\n <semantics>\\n <mrow>\\n <mo><</mo>\\n <msup>\\n <mi>μ</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$<\\\\mu ^+$</annotation>\\n </semantics></math> both with cofinality <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≥</mo>\\n <msubsup>\\n <mi>κ</mi>\\n <mi>μ</mi>\\n <mo>∗</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\ge \\\\kappa ^*_\\\\mu (\\\\mathcal {K})$</annotation>\\n </semantics></math>, if <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathcal {K}$</annotation>\\n </semantics></math> satisfies symmetry for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>non</mi>\\n <mi>-</mi>\\n <mi>μ</mi>\\n <mi>-</mi>\\n <mi>splitting</mi>\\n </mrow>\\n <annotation>${\\\\rm non}\\\\text{-}\\\\mu\\\\text{-}{\\\\rm splitting}$</annotation>\\n </semantics></math> (or just <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mu,\\\\delta)$</annotation>\\n </semantics></math>-symmetry), then, for any <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$M_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$M_2$</annotation>\\n </semantics></math> that are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>ϑ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mu,\\\\vartheta)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>μ</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mu,\\\\delta)$</annotation>\\n </semantics></math>-limit models over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$M_0$</annotation>\\n </semantics></math>, respectively, we have that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$M_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$M_2$</annotation>\\n </semantics></math> are isomorphic over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$M_0$</annotation>\\n </semantics></math>. Note that no tameness is assumed.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 4\",\"pages\":\"438-453\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200075\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200075","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用