注入集合和射出集

IF 0.4 4区 数学 Q4 LOGIC
Natthajak Kamkru, Nattapon Sonpanow
{"title":"注入集合和射出集","authors":"Natthajak Kamkru,&nbsp;Nattapon Sonpanow","doi":"10.1002/malq.202300059","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the relationships between the cardinalities of the set of injections, the set of surjections, and the set of all functions on a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$I(\\mathfrak {m})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$J(\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mi>m</mi>\n <mi>m</mi>\n </msup>\n <annotation>$\\mathfrak {m}^\\mathfrak {m}$</annotation>\n </semantics></math>, respectively. Among our results, we show that “<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>seq</mo>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mi>I</mi>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mo>seq</mo>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{seq}^{1-1}(\\mathfrak {m})\\ne I(\\mathfrak {m})\\ne \\operatorname{seq}(\\mathfrak {m})$</annotation>\n </semantics></math>”, “<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>seq</mo>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mi>J</mi>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mo>seq</mo>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{seq}^{1-1}(\\mathfrak {m})\\ne J(\\mathfrak {m})\\ne \\operatorname{seq}(\\mathfrak {m})$</annotation>\n </semantics></math>” and “<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>seq</mo>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>m</mi>\n <mi>m</mi>\n </msup>\n <mo>≠</mo>\n <mo>seq</mo>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{seq}^{1-1}(\\mathfrak {m})&amp;lt;\\mathfrak {m}^\\mathfrak {m}\\ne \\operatorname{seq}(\\mathfrak {m})$</annotation>\n </semantics></math>” are provable for an arbitrary infinite cardinal <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>, and these are the best possible results, in the Zermelo-Fraenkel set theory (<span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>) without the Axiom of Choice. Also, we show that it is relatively consistent with <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that there exists an infinite cardinal <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>I</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>&lt;</mo>\n <mi>J</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$S(\\mathfrak {m})=I(\\mathfrak {m})&amp;lt;J(\\mathfrak {m})$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$S(\\mathfrak {m})$</annotation>\n </semantics></math> denotes the cardinality of the set of bijections on a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 3","pages":"275-285"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The set of injections and the set of surjections on a set\",\"authors\":\"Natthajak Kamkru,&nbsp;Nattapon Sonpanow\",\"doi\":\"10.1002/malq.202300059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the relationships between the cardinalities of the set of injections, the set of surjections, and the set of all functions on a set which is of cardinality <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$I(\\\\mathfrak {m})$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>J</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$J(\\\\mathfrak {m})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>m</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$\\\\mathfrak {m}^\\\\mathfrak {m}$</annotation>\\n </semantics></math>, respectively. Among our results, we show that “<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo>seq</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mi>I</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mo>seq</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{seq}^{1-1}(\\\\mathfrak {m})\\\\ne I(\\\\mathfrak {m})\\\\ne \\\\operatorname{seq}(\\\\mathfrak {m})$</annotation>\\n </semantics></math>”, “<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo>seq</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mi>J</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mo>seq</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{seq}^{1-1}(\\\\mathfrak {m})\\\\ne J(\\\\mathfrak {m})\\\\ne \\\\operatorname{seq}(\\\\mathfrak {m})$</annotation>\\n </semantics></math>” and “<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo>seq</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>m</mi>\\n <mi>m</mi>\\n </msup>\\n <mo>≠</mo>\\n <mo>seq</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{seq}^{1-1}(\\\\mathfrak {m})&amp;lt;\\\\mathfrak {m}^\\\\mathfrak {m}\\\\ne \\\\operatorname{seq}(\\\\mathfrak {m})$</annotation>\\n </semantics></math>” are provable for an arbitrary infinite cardinal <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>, and these are the best possible results, in the Zermelo-Fraenkel set theory (<span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>) without the Axiom of Choice. Also, we show that it is relatively consistent with <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> that there exists an infinite cardinal <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>I</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>&lt;</mo>\\n <mi>J</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$S(\\\\mathfrak {m})=I(\\\\mathfrak {m})&amp;lt;J(\\\\mathfrak {m})$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$S(\\\\mathfrak {m})$</annotation>\\n </semantics></math> denotes the cardinality of the set of bijections on a set which is of cardinality <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 3\",\"pages\":\"275-285\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300059\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了注入集合、射出集合和一个集合上所有函数的集合的心数之间的关系,这些集合的心数为 m $\mathfrak {m}$,分别用 I ( m ) $I(\mathfrak {m})$、J ( m ) $J(\mathfrak {m})$和 m m $\mathfrak {m}^\mathfrak {m}$表示。Among our results, we show that “ seq 1 − 1 ( m ) ≠ I ( m ) ≠ seq ( m ) $\operatorname{seq}^{1-1}(\mathfrak {m})\ne I(\mathfrak {m})\ne \operatorname{seq}(\mathfrak {m})$ ”, “ seq 1 − 1 ( m ) ≠ J ( m ) ≠ seq ( m ) $\operatorname{seq}^{1-1}(\mathfrak {m})\ne J(\mathfrak {m})\ne \operatorname{seq}(\mathfrak {m})$ ” and “ seq 1 − 1 ( m ) < m m ≠ seq ( m ) $\operatorname{seq}^{1-1}(\mathfrak {m})&lt;\mathfrak {m}^\mathfrak {m}\ne \operatorname{seq}(\mathfrak {m})$ ” are provable for an arbitrary infinite cardinal m $\mathfrak {m}$ , and these are the best possible results, in the Zermelo-Fraenkel set theory ( ZF $\mathsf {ZF}$ ) without the Axiom of Choice.另外,我们还证明,存在一个无限红心 m $\mathfrak {m}$,使得 S ( m ) = I ( m ) <; J ( m ) $S(\mathfrak {m})=I(\mathfrak {m})&lt;J(\mathfrak {m})$ 其中 S ( m ) $S(\mathfrak {m})$表示一个集合上双射集合的万有性,这个集合的万有性为 m $\mathfrak {m}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The set of injections and the set of surjections on a set

In this paper, we investigate the relationships between the cardinalities of the set of injections, the set of surjections, and the set of all functions on a set which is of cardinality m $\mathfrak {m}$ , denoted by I ( m ) $I(\mathfrak {m})$ , J ( m ) $J(\mathfrak {m})$ and m m $\mathfrak {m}^\mathfrak {m}$ , respectively. Among our results, we show that “ seq 1 1 ( m ) I ( m ) seq ( m ) $\operatorname{seq}^{1-1}(\mathfrak {m})\ne I(\mathfrak {m})\ne \operatorname{seq}(\mathfrak {m})$ ”, “ seq 1 1 ( m ) J ( m ) seq ( m ) $\operatorname{seq}^{1-1}(\mathfrak {m})\ne J(\mathfrak {m})\ne \operatorname{seq}(\mathfrak {m})$ ” and “ seq 1 1 ( m ) < m m seq ( m ) $\operatorname{seq}^{1-1}(\mathfrak {m})&lt;\mathfrak {m}^\mathfrak {m}\ne \operatorname{seq}(\mathfrak {m})$ ” are provable for an arbitrary infinite cardinal m $\mathfrak {m}$ , and these are the best possible results, in the Zermelo-Fraenkel set theory ( ZF $\mathsf {ZF}$ ) without the Axiom of Choice. Also, we show that it is relatively consistent with ZF $\mathsf {ZF}$ that there exists an infinite cardinal m $\mathfrak {m}$ such that S ( m ) = I ( m ) < J ( m ) $S(\mathfrak {m})=I(\mathfrak {m})&lt;J(\mathfrak {m})$ where S ( m ) $S(\mathfrak {m})$ denotes the cardinality of the set of bijections on a set which is of cardinality m $\mathfrak {m}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信